Characteristics of δ13C in typical aquatic plants and carbon sequestration in the Huixian karst wetland,Guilin
-
摘要: 为促进目前岩溶碳汇稳定性和速率等科学问题的深入研究,在分析桂林会仙岩溶湿地主要水生植物碳同位素的基础上,利用基于碳酸酐酶活性与植物碳同位素值显著正相关的二端元模型,估算了不同植物利用光合作用固定HCO3-的比例。结果表明,湿地核心区沉水植物光合作用固定HCO3-碳量在4.86~64.73 tC/(a?km2)之间,挺水植物为15.68~453.01 tC/(a?km2),平均值为76.74 tC/(a?km2)。按平均值计算会仙湿地水生植物光合作用固定HCO3-碳量为4 466.27 tC/a,即在会仙湿地岩溶地下河补给的HCO3-中约47 %被水生植物光合作用固定。水生植物光合作用固碳效果明显,是碳汇研究中不容忽视的一个十分重要的问题。Abstract: Currently,the stability and the velocity of karst carbon sink are two major scientific questions urgently need to be answered. Characteristics of δ13C in major aquatic vegetations in the Huixian karst wetland are discussed in this paper,and the percentages of photosynthetic carbon fixation are estimated by means of double-meta model in which remarkable positive relationship is presented between carbonate anhydrase activity and the value of plant carbon isotope. The Huixian karst wetland,located in Huixian town,Lingui county and 30 km away from Guilin city,is the largest natural wetland in low-altitude area of subtropical zone of China. The wetland is mainly sourced by karst groundwater. To understand the characteristics of δ13C value in different aquatic plants,aquatic plant sampling is conducted on 10-12,August,2011,and 17 aquatic plants are collected in the core zone of this karst groundwater-fed wetland and their δ13C are analyzed. The δ13C values varied from -30.08 ‰ to -18.91 ‰ with an average of -26.65 ‰,in which the maximum is in watermifoil and the minimum is in scripus triqueter. The mean δ13C values of various plants in descending order are -23.91 ‰ (submerged plant),-27.49 ‰ (hydrophyte),-28.66 ‰ (emergent plant),-28.78 ‰ (floating plant) respectively. The results show that the values of HCO3- carbon sequestration range from 4.86 to 64.73 tC/(a?km2) for submerged plants and from 15.68 to 453.01 tC/(a?km2) for emerged plants respectively in the core zone of the wetland with a mean value of 76.74 tC/(a?km2). Furthermore,the fixed HCO3- carbon consumed by photosynthesis is estimated to be 4 466.27 tC/a using this mean value,i.e.,approximately 47 % of HCO3- fed by karst underground streams are consumed by aquatic vegetation photosynthesis in the wetland. Remarkable effect of carbon fixation by aquatic plant shows that the photosynthesis of aquatic plants can not be neglected in karst carbon sink study,especially for net carbon sink estimation in karst region.
-
Key words:
- aquatic vegetation /
- carbon isotope /
- karst wetland /
- carbon fixation /
- Huixian
-
[1] 高丽楠.水生植物光合作用影响因子研究进展[J]. 成都大学学报(自然科学版),2013,32(1): 1-8. [2] Prins H B A,Elzenga J T M. Bicarbonate utilization: Function and mechanism[J]. Aquatic Botany,1989,34(1-3) : 59- 83. [3] Madsen T V. Growth and photosynthetic acclimation byRanunculus aquatilis L . in response to inorganic carbon availability[J]. New Phytology,1983,125(4): 707-715. [4] Sand-Jensen K. Photosynthetic carbon sources of stream macrophytes[J]. Journal of Experimental Botany,1983,34(2): 198-210. [5] O’Leary M H. Carbon isotope fractionation in plants. Phytochemistry,1981,20: 553-566. [6] 冯虎元,安黎哲,王勋陵.环境条件对植物稳定同位素组成的影响[J]. 植物学通报,2000,17 (4): 312-318. [7] 陈毅凤,张军,万国江.贵州草海湖泊系统碳循环简单模式[J]. 湖泊科学,2001,13 (1) :15-19. [8] 林清,王绍令.沉水植物稳定碳同位素组成及影响因素分析[J]. 生态学报,2001,21 (5) :806-809. [9] 林清. 温度和无机碳浓度对龙须眼子菜(Potamogeton pectinatus)碳同位素分馏的影响[J]. 生态学报,2008,28(2): 570-576. [10] 黄亮,吴莹,张经,等.长江中游若干湖泊水生植物体内C、N、P 及δ13C分布[J]. 地球学报,2003,24(6): 515-518. [11] 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报,2012,57(2-3): 95-102. [12] 袁道先. 地质作用与碳循环研究的回顾和展望[J]. 科学通报,2011,56(26):2157. [13] 蔡德所,马祖陆,蒋忠诚,等. 会仙岩溶湿地生态系统研究[M]. 北京: 地质出版社,2012:1-18,64-231. [14] 吴沿友,邢德科,刘莹. 植物利用碳酸氢根离子的特征分析[J]. 地球与环境,2011,39(2): 273-277. [15] Beer S,Wetzel R G. Photosynthesis in submerged macrophytes of a temperate lake[J]. Plant Physiology,1982,70:488-492. [16] 肖月娥,陈开宁,戴新宾,等. 太湖两种大型沉水植物无机碳利用效率差异及其机理[J]. 植物生态学报,2007,31(3):490-496. [17] Badger M R,Price G D. The role of carbonic anhydrase in photosynthesis[M]. Annual Review of Plant Physiology and Plant Molecular Biology,1994,45:369-392. [18] Burnell J N,Hatch M D. Low bundle sheath carbonic anhydrase is apparently essential for effective C4 pathway operation[J]. Plant Physiolog,1990,86:1252-1256. [19] Mook W G,Bommerson J C,Staverman W H. Carbon isotope fraction between dissolved bicarbonate and gaseous carbon dioxide[J]. Earth and Planetary Science Letters,1974,22: 169-176. [20] 刘彦,张金流,何媛媛,等. 单生卵囊藻对DIC的利用及其对CaCO3沉积影响的研究[J]. 地球化学,2010,39(2): 191-196. [21] Berridge M J,Bootman M D,Lipp P. Calcium-a life and death signal [J]. Nature,1998,395(6703):645-648. [22] Obst M,Dynes J J,Lawrence J R,et al. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process[J]. Geochim Cosmochim Acta,2009,73(14):4180-4198. [23] 张强. 岩溶地质碳汇的稳定性——以贵州草海地质碳汇为例[J]. 地球学报,2012,33(6):947-952. [24] Liu Z H,Liu X L,Liao C J. Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a karst spring-fed pool: Insights from high time-resolution monitoring of physico-chemistry of water[J]. Environmental Geology,2008,55(6): 1159-1168. -
点击查看大图
计量
- 文章访问数: 2145
- HTML浏览量: 442
- PDF下载量: 1279
- 被引次数: 0
下载: