• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶洞穴滴水环境监测研究进展

彭玲莉 李廷勇

彭玲莉, 李廷勇. 岩溶洞穴滴水环境监测研究进展[J]. 中国岩溶, 2012, 31(3): 316-326. doi: 10.3969/j.issn.1001-4810.2012.03.014
引用本文: 彭玲莉, 李廷勇. 岩溶洞穴滴水环境监测研究进展[J]. 中国岩溶, 2012, 31(3): 316-326. doi: 10.3969/j.issn.1001-4810.2012.03.014
PENG Ling-li, LI Ting-yong. Research progress of monitoring for dripping water environment in karst caves[J]. CARSOLOGICA SINICA, 2012, 31(3): 316-326. doi: 10.3969/j.issn.1001-4810.2012.03.014
Citation: PENG Ling-li, LI Ting-yong. Research progress of monitoring for dripping water environment in karst caves[J]. CARSOLOGICA SINICA, 2012, 31(3): 316-326. doi: 10.3969/j.issn.1001-4810.2012.03.014

岩溶洞穴滴水环境监测研究进展

doi: 10.3969/j.issn.1001-4810.2012.03.014
基金项目: 国家自然科学基金项目(40802035、41030103、41172165),黄土与第四纪地质国家重点实验室开放基金项目(SKLLQG0907),西南大学基本科研业务费专项资金重点项目(XDJK2009B016)

Research progress of monitoring for dripping water environment in karst caves

  • 摘要: 通过对已有成果的疏理总结,前人的洞穴滴水环境监测研究取得了以下几个方面的主要认识:(1)滴水的氢氧同位素组成虽然基本反映了大气降水的同位素构成,但由于洞穴上覆岩层厚度及裂隙的差异等,导致滴水对降水时间响应不同,滴水氢氧同位素变化存在多样性。(2)滴水化学组成主要受到水—土—岩—气之间相互作用影响,其中的溶解无机碳同位素及有机酸等还受到上覆植被类型以及密度的影响。(3)洞穴物理环境条件是决定洞穴滴水—沉积物中氧碳稳定同位素能否达到平衡分馏的重要因素。(4)由于滴水化学组成指示气候环境变化仍存在多解性和不确定性,需要将洞穴监测研究从洞穴内部扩大到洞穴上覆土壤、植被等中间过程,建立立体监测体系。(5)目前的洞穴环境监测仍缺乏不同自然条件下的综合对比研究,有待今后开展和加强。

     

  • [1] Broecker W S. Massive iceberg discharges as triggers for global climate change[J]. Nature, 1994, 372:421—424.
    [2] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science,2004,304(23):575—578.
    [3] Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews,2006,75:105—153.
    [4] 程海,艾思本,王先锋,等.中国南方石笋氧同位素记录的重要意义[J].第四纪研究,2005,25(2):157—158.
    [5] 郑立娜,周厚云,朱照宇.洞穴次生碳酸盐沉积的Mg/Ca与Sr/Ca比值研究进展——兼论洞穴次生沉积物Mg/Ca与Sr/Ca的影响机制[J].中国岩溶,2010,29(2):212—218.
    [6] 周运超,王世杰.贵州凉风洞洞穴滴水水文水化学过程分析[J].第四纪研究,2005,25(2):208—215.
    [7] 罗维均,王世杰.贵州凉风洞大气降水—土壤水—滴水的δ18O信号传递及其意义[J].科学通报,2008,53(17):2071—2076.
    [8] Baker A, Genty D, Fairchild I J. Hydrological characterization of stalagmite drip waters at Grottede Villars, Dordogne, by the analysis of inorganic species and luminescent organic matter[J]. Hydrology and Earth System Sciences,2000,4:439—449.
    [9] Cobb K M, Adkins J F, Partin J W, et al. Regional-scale climate influences on temporal variations of rainwater and cave drip water oxygen isotopes in northern Borneo[J]. Earth and Planetary Science Letters,2007,263:207—220.
    [10] Hendy C H. The isotopic geochemistry of speleothems-Ⅰ: The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoe limatic indicators[J]. Geochimica et Cosmochimica Acta,1971,35:801—824.
    [11] Harmon R S, Thompson P, Schwarez H P, et al. Late Pleistocene paleo climates of North America as inferred from stable isotope studies of speleothems[J]. Quaternary Research, 1978,9:54—70.
    [12] Henning G J, Grun R. Brunnacker K. Speleothems, travertines, and paleo climates[J]. Quaternary Research,1983,20:1—29.
    [13] Gascoyne M. Paleo climate determination from cave calcite deposits[J]. Quaternary Science Reviews, 1992,11:609—632.
    [14] 李红春,顾德隆,赵树森,等.北京石花洞地区水系氢氧同位素及氚含量研究——石花洞研究系列之一[J].地震研究,1996,18(4):325—328.
    [15] 谭明,南素兰.中国季风区降水氧同位素年际变化的“环流效应”初探[J].第四纪研究,2010,30(3):620—622.
    [16] 罗维均,王世杰,刘秀明.中国大气降水δ18O区域特征及其对古气候研究的意义[J].地球与环境,2008,36(1):47—55.
    [17] 李晖,蒋忠诚,王月,等.新疆地区大气降水中稳定同位素的变化特征[J].水土保持研究,2009,16(5):157—161.
    [18] 张平中,陈一萌,Jhonsno K R,等.甘肃武都万象洞滴水与现代石笋同位素的环境意义[J].科学通报,2004,49(15):1529—1531.
    [19] Wackerbarth A, Scholz D, Fohlmeister J, et al. Modelling theδ18O value of cave drip water and speleothem calcite[J]. Earth and Planetary Science Letters, 2010,299:387—397.
    [20] 田立德,马凌龙,余武生,等.青藏高原东部玉树降水中稳定同位素季节变化与水汽输送[J].中国科学D辑,2008,38(8):986—992.
    [21] 李彬,袁道先,林玉石,等.桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义[J].中国科学(D辑),2000,30(1):81—87.
    [22] Vaks A, Bar-Matthews M, Ayalon A, et al. Paleo climate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel[J]. Quaternary Research,2003,59:182—193.
    [23] 刘鑫,宋献方,夏军,等.黄土高原岔巴沟流域降水氢氧同位素特征及水汽来源初探[J].资源科学,2007,129(3):59—66.
    [24] Pape J R, Banner J L, Mack L E, et al. Controls on oxygen isotope variability in precipitation and cave drip waters, central Texas,USA[J]. Journal of Hydrology, 2010,85:203—215.
    [25] 章新平,姚檀栋,刘晶淼,等.不同时间尺度下的稳定同位素变化[J].冰川冻土,2005,25(4):428—432.
    [26] Bar-Matthews M, Ayalon A, Gilmour M, et al. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication paleo rainfall during interglacial intervals[J]. Geochimica et Cosmochimica Acta, 2003,67:3181—3199.
    [27] Bar-Matthews M, Ayalon A, Matthews A, et al. Carbon and oxygen isotope study of the active water-carbonate system in the karstic Mediterranean cave: implications for paleo climate research in semiarid regions[J]. Geochimica et Cosmochimica Acta,1996,60:337—347.
    [28] Li T Y, Shen C C, Li H C, et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chong Qing, China[J]. Geochimica et Cosmochimica Acta,2011,75:4140—4156.
    [29] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science,2001,294:2345—2348.
    [30] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate[J]. Science,2005,308:854—857.
    [31] Wang Y J, Cheng H, Edwards R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J].Nature,2008,451:1090—1093.
    [32] Cheng H, Edwards R L, Broecker W S, et al. Ice Age Terminations[J]. Science, 2009, 326: 248—252.
    [33] Clemens S C, Prell W L, Sun Y B, et al. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoon: Reinterpreting cave speleothem δ18O[J]. Paleoceanography, 2010, 25,PA4207,doi: 10.1029/2010PA001926.
    [34] Francesco S R P, David S B, Kerim H N, et al. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J]. Nature Geoscience, 2011, doi: 10.1038/NGEO1169.
    [35] 庞洪喜,何元庆,张忠林.重要海—气—天文事件与新德里季风季水中δ18O的关系[J].冰川冻土,2004,26(1):42—47.
    [36] 柳鉴容,宋献方,袁国富,等.中国东部季风区大气降水δ18O的特征及水汽来源[J].科学通报,2009,54(22):3521—3531.
    [37] Cerling T E. The stable isotopic composition of soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters,1984,71:229—240.
    [38] 李红春,顾德隆,StottL,等.北京石花洞石笋500年来的δ13C记录与古气候变化及大气CO2浓度变化的关系[J].中国岩溶,1997,16(4):285—296.
    [39] Andy B, Emi I, Peter L, et al. Elevated and variable values of 13C in speleothems in a British cave system[J]. Chemical Geology,1997,136:263—270.
    [40] Mc DermottF. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review[J]. Quaternary Science Reviews,2004,23:901—918.
    [41] 姜修洋,李志忠.洞穴次生碳酸盐稳定同位素古气候重建研究进展[J].亚热带资源与环境学报,2010,5(3):64—72.
    [42] 李廷勇,李红春,向晓晶,等.碳同位素(δ13C)在重庆岩溶地区植被—土壤—基岩—洞穴系统运移特征研究[J].中国科学,2012,42(4):526—535.
    [43] Tremaine D M, Froelich P N, Yang Wang. Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleo climate proxies in a continuously-monitored natural cave system[J]. Geochimica et Cosmochimica Acta,2011,75,4929—4950.
    [44] Mattey D, Lowry D, Duffet J, et al. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation[J]. Earth and Planetary Science Letters,2008,269:80—95.
    [45] Katz A. The interaction of magnesium with calcite during crystal grow that 25–90℃ and one atmosphere[J]. Geochim Cosmochim Acta,1973,37:1563—1586.
    [46] Mucci A. Influence of temperature on the composition of magnesium calcite over grpwths preci-pitated from sea water[J]. Geochim Cosmochim Acta,1987,51:1977—1984.
    [47] Dever L, Duran R, Fontes J C, et al. Etude pedogenetique et isotopique des neoformations de calcite dans un sol sur craie; caracteristiques et origines[J]. Geochimica et Cosmochimica Acta, 1983,47:2079—2090.
    [48] 杨琰.洞穴石笋高精度ICP—MS铀系年代学与西南岩溶地区古气候变化研究[D].武汉:中国地质大学,2006.
    [49] Epstein S, Buchsbaum R, Lowenstam H A, et al. Revised carbonate-water isotopic temperature scale[J]. Geological Society of America,1953,64:1315—1325.
    [50] O’Neil J R, Clayton R N, Mayeda T. Oxygen isotope fraction ation in divalentmetal carbonates[J]. Journal of Chemical Physics,1969,30:5547—5558.
    [51] 李红春,顾德隆,陈文寄,等.利用洞穴石笋的δ18O和δ13C重建3000a以来北京地区古气候和古环境——石花洞研究系列之三[J].地震地质,1997,19(1):77—85.
    [52] Fohlmeister J, Scholz D, Kromer B, et al. Modelling carbon isotopes of carbonates in cave drip water[J]. Geochimica et Cosmochimica Acta,2011,75:5219—5228.
    [53] Polag D, Scholz D, Mühlinghaus C, et al. Stable isotope fractionation in speleothems: Laboratory experiments[J]. Chemical Geology,2010,279:31—39.
    [54] Michler P, Banner L, Stern A, et al. Stable isotope variations in modern tropical speleothems: Evaluating equilibrium vs. kinetic isotope effects[J]. Geochimica et Cosmochimica Acta, 2004, 68:4381—4393.
    [55] Mickler J, Stern A, Banner L. Large kinetic isotope effects in modern speleothems[J]. Geological Society of America Bulletin,2006,118:65—81.
    [56] Dreybrodt W, Scholz D. Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite[J]. Geochimica et Cosmochimica Acta,2011,75:734—752.
    [57] Dorale J A, Liu Z H. Limitations of hendytest criteriain judging hepaleo climatics uitability of speleothems and the need for replication[J]. Journal of Caveand Karst Studies,2009,71:73—80.
    [58] Baldini J U L, McDermott F, Fairchild I J. Structure of the 8200 year cold event revealed by a speleothem trace element record[J]. Science,2002,296:2203—2206.
    [59] Cruz F R, Burns S J, Jercinovic M, et al. Evidence of rainfal l variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite[J]. Geochimica et Cosmochimica Acta, 2007,71:2250—2263.
    [60] Zhou H Y, Feng Y X, Zhao J X, et al. Deglacial variations of Sr and 87Sr/86Sr ratio recorded by a stalagmite from Central China and their association with past climate and environment[J]. Chemical Geology, 2009,268:233—247.
    [61] 胡进武,王增银,周炼,等.岩溶水锶元素水文地球化学特征[J].中国岩溶,2004,23(1):37—42.
    [62] Musgrove M, Banner J L. Controls on the spatial and temporal variability of vadose drip water geochemistry: Edwards Aquifer, central Texas[J]. Geochimica et Cosmochimica Acta, 2004, 68:1007—1020.
    [63] 王明达,胡超涌,周炼,等.围岩地球化学组成及气候对洞穴滴水水化学的影响——以湖北清江和尚洞为例[J].地质科技情报,2010,29(3):97—103.
    [64] Frumkin A, Stein M. The Sahara-East Mediterranean dust and climate connection revealed by strontium and uranium isotopes in a Jerusalem speleothem[J]. Earth and Planetary Science Letters, 2004,217:451—464.
    [65] Fairchild I J, Baker A, Borsato A S, et al. Annual to sub-annual resolution of multiple trace element trends in speleothems[J]. Journal of the Geological Society,2001,158:831—841.
    [66] VanBeynen P E, Soto L, Pace-Graczy k K. Paleo climate reconstruction derived from speleothem strontium and δ13C in Central Florida[J]. Quaternary International,2008,187:76—83.
    [67] Johnson K R, Hu C, Belshaw N S, et al. Seasonal trace-element and stable isotope variations in a Chinese speleothem: the potential for high resolution paleomonsoon reconstruction[J]. Earth and Planetary Science Letters,2006,244:394—407.
    [68] Gascoyne M. Trace-element partition coefficients in the calcite water system and their paleo climatic significance in cave studies[J]. Journal of Hydrology,1983,61:213—222.
    [69] 马志邦,李红春,夏明,等.距今3ka来京东地区的古温度变化:石笋Mg/Sr记录[J].科学通报,2002,47(23):1829—1834.
    [70] Fairchild I J, Pauline C, Treble. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews,2009,28:449—468.
    [71] Fairchild I J, Borsato A, Tooth A F, et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records[J]. Chemical Geology, 2000, 166:255—269.
    [72] Tooth A F, Fairchild I J. Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem - forming drip waters, Crag Cave, southwes t Ireland[J]. Journal of Hydrology, 2003,273:51—68.
    [73] McDonald J, Drysdale R, Hill D, et al. The hydrochemical response of cave drip waters to sub-annual and inter-annual climate variability, Wombeyan Caves, SE Australia[J]. Chemical Geology, 2007,244:605—623.
    [74] 王新中,班凤梅,潘根兴.洞穴滴水地球化学的空间和时间变化及其控制因素——以北京石花洞为例[J].第四纪研究,2005,25(2):255—264.
    [75] 李清.重庆地区末次冰期以来石笋的微量元素及古气候记录研究[D].重庆:西南大学,2009.
    [76] 李珊英.洞穴石笋ICP-MS微量元素分析技术与豫西MIS8/9时段古气候变化研究[D].重庆:西南大学,2012.
    [77] 周运超,王世杰.贵州七星洞滴水的水文水化学特征及其意义[J].水文地质工程地质,2006,1:52—57.
    [78] 傅平青,刘丛强,尹祚莹,等.腐殖酸三维荧光光谱特性研究[J].地球化学,2004,33(3):301—308.
    [79] Baker A, Genty D, Smart P L. High-resolution records of soil humification and palaeoclimate from variations in speleothem luminescence excitation and emission wavelengths[J]. Geology, 1998, 26(10):903—906.
    [80] Baker A, Genty D. Fluoresce ncewavelength and intensity variations of cave waters[J]. Journal of Hydrology,1999,217:19—34.
    [81] 谢兴能,王世杰,周运超,等.洞穴滴水溶解有机碳三维荧光光谱特征及其对环境的响应:以贵州4个洞穴系统为例[J].科学通报,2007,52(23):2781—2784.
    [82] 黄咸雨,蒲阳,崔景伟,等.湖北清江和尚洞洞穴滴水脂肪酸分布特征及其古生态意义[J].第四纪研究,2007,27(3):401—407.
    [83] Li X L, Wang C F, Huang J H, et al. Seasonal variation of fatty acids from drip water in Heshang Cave, central China[J]. Applied Geochemistry,2011,26:341—347.
    [84] 张美良,朱晓燕,林玉石,等.桂林盘龙洞滴水的物理化学指标变化研究及其意义[J].地球与环境,2009,37(1):1—9.
    [85] Sp?tl C, Fairchild I J, Tooth A F. Cave air control on drip water geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica et Cosmochimica Acta,2005,69:2451—2468.
    [86] Baldini J U L,McDermott F, Fairchild I J. Spatial variability in cave drip water hydro chemistry: Implications for stalagmite paleoclimate records[J]. Chemical Geology, 2006, 235:390—404.
    [87] Baldini J U L, McDermott F, Hoffmann D L, et al. Very high-frequency and seasonal cave atmosphere PCO2 variability: implications for stalagmite growth and oxygen isotope-based paleo climate records[J]. Earth and Planetary Science Letters,2008,272:118—129.
    [88] Kowalcz k A J, Froelich P N. Cave air ventilation and CO2 outgassing by radon-222 modeling: How fast do caves breathe?[J]. Earth and Planetary Science Letters,2010,289:209—219.
    [89] Faimon J, ?telcl J, Sas D. Anthropogenic CO2-flux into cave atmosphere and its environmental impact: A case study in the Císaˇrsk Cave (Moravian Karst, Czech Republic) [J]. Science of the Total Environment,2006,369:231—245.
  • 加载中
计量
  • 文章访问数:  2199
  • HTML浏览量:  335
  • PDF下载量:  2012
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-26
  • 发布日期:  2012-09-25

目录

    /

    返回文章
    返回