Degasification of the outcropped epikarst water:A case study on the Baishuwan Spring in Nanchuan,Chongqing
-
摘要: 以重庆市南川区柏树湾表层岩溶泉溪流为例,沿柏枝溪流程以一定间距监测水体中HCO3-的浓度及其pH、电导率、溶解氧等水化学参数,并初步探究溪流水的脱气效应。结果显示(1)表层岩溶地下水出露地表后,HCO3-浓度沿流程呈现出递减的规律;(2)HCO3-浓度递减的快慢反映了脱气作用的强弱,溪流脱气速率具有“枯水期>平水期>丰水期”的特点;(3)暴雨期间由于稀释效应HCO3-浓度递减趋势不明显,但降雨后期,递减又开始逐渐产生;(4)脱气效应在造成溪流水HCO3-浓度减小的同时,也导致电导率(EC)沿柏枝溪流程逐渐降低,而pH值逐渐升高;(5)沿途溶解氧(DO)昼夜变化表明,水生生物作用对脱气作用可能也有一定的影响,但其影响机制还有待进一步的研究。Abstract: HCO3- Concentration, pH, conductivity (EC) and dissolved oxygen are monitored with certain space along the downstream of the Baishuwan Spring—the Baizhi Stream, and a preliminary study on the degasification of the karst water is conducted in the case study. The results show that (1)there is a decreasing trend in HCO3- concentration along the flow path; (2) the decreasing speed of HCO3- concentration reflects the speed of degasification and the degassing speed in different season assumes “drought period > normal period > rainy period”; (3) dilution effect of the rain water makes the decreasing trend unobvious, but after the rainfall, it starts to present a decreasing trend again; (4) degasification also causes the conductivity (EC) decline along the flow path, but pH values increase; (5) diurnal variation in dissolved oxygen (DO) along the flow path shows that the aquatic organism may have some influences on the degasification, but the influencing mechanism still needs further study.
-
Key words:
- epikarst spring /
- HCO3- concentration /
- degasification
-
[1] Broecker W S, Takahashi T, Simpppson H J, et al. Fate of fossil fuel carbon dioxide and the global carbon budget[J]. Science,1979, 206: 409-418. [2] Schindler D W. The mysterious missing sink[J]. Nature, 1999 , 398:105-106. [3] 王效科,白艳莹,欧阳志云,等.全球碳循环中的失汇及其形成原因[J].生态学报,2002,22(1):94-103. [4] 袁道先.现代岩溶学和全球变化研究[J].地学前沿,1997,4:17-24. [5] 徐胜友,蒋忠诚.我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J].科学通报,1997,42(9):953-956. [6] Adamczyk K, Prémont-Schwarz M, Pines D E, et al. Real-time observation of carbonic acid formation in aqueous solution[J],Science, 2009,326: 1690-1694. [7] Yuan Daoxian. The carbon cycle in karst[J]. Z.Geomorph, 1997,108(Suppl): 91-102. [8] 李林立.西南典型岩溶生态环境对表层岩溶水调蓄功能的影响研究[D].2009.西南大学. [9] 林明珠,谢世友,衡涛.喀斯特山地不同土地利用对表层岩溶泉水化学特征的影响[J].水土保持学报.2011,25(4):212-216. [10] 袁道先.碳循环与全球岩溶[J].第四纪研究,1993,1:1-6. [11] 刘再华,袁道先.中国典型表层岩溶系统的地球动态特征及其环境意义[J].地质论评,2000,46(3):324-327. [12] 章程,袁道先,曹建华,等.典型表层岩溶泉短时间尺度动态变化[J].地球学报,2004,25(4):467-471. [13] 王海静,刘再华,曾成,等.四川黄龙沟源头黄龙泉泉水及其下游溪水的水化学变化研究[J].地球化学,2009,38(3):307-314. [14] 刘再华,李强,孙海龙,等.云南白水台钙华水池中水化学日变化及其生物控制的发现[J],水文地质工程地质,2005,6:10-15. [15] 刘彦,张金流,何媛媛,等.单生卵囊藻对DIC的利用及其Ca-CO3沉积影响的研究[J],地球化学,2010,39(2):191-196. -
点击查看大图
计量
- 文章访问数: 2172
- HTML浏览量: 366
- PDF下载量: 926
- 被引次数: 0
下载: