Study on carbon sink effect in typical sub-tropical karst water system
-
摘要: 选择中国南方亚热带地区具有不同地质背景和生态状况的广西柳州市官村地下河(灌木林生态环境、人类活动影响显著)、云南省广南县木美地下河(石漠化严重)和贵州茂兰板寨地下河(原始森林生态)3个岩溶水系统为例,对比研究岩溶水中溶解无机碳浓度和碳汇效应的差异。结果表现,(1)流域管道水的溶解无机碳平均浓度排列顺序为:官村>木美>板寨,表层岩溶带泉水的排列顺序为:木美>官村>板寨。(2)水的PCO2分压计算结果显示:3个流域岩溶水的方解石溶解度基本达到饱和,PCO2的大小顺序为:官村地下河>木美地下河>板寨地下河。(3)根据一个水文年的流量监测计算官村地下河流域的岩溶碳汇强度为12.34tC/(km2?a),板寨地下河流域的为11.8tC/(km2?a),木美地下河流域为34.11tC/(km2?a)。木美地下河流域的石漠化现状相当严重,石漠化面积高达90%,而板寨地下河为原始森林区,但木美地下河流域的岩溶碳汇强度却最大,这与其流域面积大、调蓄功能强,且有外源水补给有关。这也同时表明,单从生态环境的角度去研究岩溶作用碳汇潜力是不够的。Abstract: Three karst water systems in South China with different geological conditions and eco-environment are selected to study the differences of the dissolved inorganic carbon and carbon sink effect. These karst water systems include Guancun underground river system in shrubbery and distinct human impact area, Mumei underground river in rock desert and Banzhai underground river in primeval forest. The results of the study prove that: (1) concentration of dissolved inorganic carbon in different locations and seasons is the highest in Guancun, Mumei the second and Banzhai the lowest; (2) the PCO2 pressure in those three studied underground river waters tend to be saturated, with Mumei the biggest, Guancun the second and Banzhai smallest; (3) the quantity of karst carbon sink in Guancun, Banzhai and Mumei is 12.34 tC/(km2.a), 11.8 tC/(km2.a) and 34.11 tC/(km2.a) respectively. Rock desertification area covered 90% of the total area in Mumei, showing a serious ecosystem environment, while Banzhai is primeval forest. Large drainage area, strong regulation and storage capacity and allogenic water contribute to high carbon sink in Mumei underground river system. Therefore the potential carbon sink in karst water systems can not be explained only in view of eco-environment.
-
Key words:
- hydrochemistry of karst water /
- eco-environment /
- rock desertification /
- carbon sink
-
[1] Dreybrodt W. Processes in Karst Systems[M], Springer, Heidelberg,1988. [2] Berner R A, Lasaga A C, Garrels R M, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Sciences, 1983(283): 641-683. [3] Jiang Z, Yuan D. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999, 22(1):33-35. [4] Liu Z, Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2 sink, Environmental Geology, 2000, 39 (9): 1053-1058. [5] Guo F, Jiang G. Nitrogen budget of a typical subterranean river in peak cluster karst area[J]. Environ. Geol., 2009,58:1741–1748 [6] 章程,谢运球,吕勇,等.不同土地利用方式对岩溶作用的影响——以广西弄拉峰丛洼地岩溶系统为例[J].地理学报,2006,61(11):1181-1188. [7] 章程.不同土地利用下的岩溶作用强度及其碳汇效应[J].科学通报,2011,56(26):2174-2180. [8] 袁道先.现代岩溶学和全球变化研究[J].地学前缘,1997,4(1,2):17-25. [9] U.S. department of the interior, U.S. geological survey,. User’s guide to phreeqc (version 2)- a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, 1999. [10] 侯满福,蒋忠诚,覃家科,等.木美地下河流域破碎化生境的岩溶植被研究[J].广西科学,2005,12(2):141-145. [11] 蒋忠诚.广西弄拉白云岩环境元素的岩溶地球化学迁移[J].中国岩溶,1997,16(4):304-312. [12] 李林立.西南典型岩溶区生态环境对表层岩溶水调蓄功能的影响研究[D].西南大学,2009. [13] Yuan D, Zhang C. Karst Processes and The Carbon Cycle-Final Report of IGCP 379[M]. Bingjing: Geological Publishing House, 2002. [14] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3-4): 162-172. -
点击查看大图
计量
- 文章访问数: 2282
- HTML浏览量: 429
- PDF下载量: 1028
- 被引次数: 0
下载: