• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石笋稀土元素含量的两种溶样方法测试结果对比分析

周厚云 汤静 袁道先

周厚云, 汤静, 袁道先. 石笋稀土元素含量的两种溶样方法测试结果对比分析[J]. 中国岩溶, 2011, 30(3): 341-347. doi: 10.3969/j.issn.1001-4810.2011.03.017
引用本文: 周厚云, 汤静, 袁道先. 石笋稀土元素含量的两种溶样方法测试结果对比分析[J]. 中国岩溶, 2011, 30(3): 341-347. doi: 10.3969/j.issn.1001-4810.2011.03.017
ZHOU Hou-yun, TANG Jing, YUAN Dao-xian. Rare earth element contents in speleothem determined by two dissolution methods[J]. CARSOLOGICA SINICA, 2011, 30(3): 341-347. doi: 10.3969/j.issn.1001-4810.2011.03.017
Citation: ZHOU Hou-yun, TANG Jing, YUAN Dao-xian. Rare earth element contents in speleothem determined by two dissolution methods[J]. CARSOLOGICA SINICA, 2011, 30(3): 341-347. doi: 10.3969/j.issn.1001-4810.2011.03.017

石笋稀土元素含量的两种溶样方法测试结果对比分析

doi: 10.3969/j.issn.1001-4810.2011.03.017
基金项目: 国家自然科学基金项目(批准号:40973009和40672120)和中国博士后基金项目(编号:20100480044)

Rare earth element contents in speleothem determined by two dissolution methods

  • 摘要: 对于采自川东北诺水河溶洞群的石笋SJ3,采用2%的HNO3和HF+HNO3两种溶样方法分析测试了其稀土元素(REE)含量。结果表明:虽然多数石笋中存在碎屑物质,SJ3的少数样品在采用2%的HNO3溶解后有明显的残留物存在,但采用HF+HNO3全部溶解样品得到的SJ3的REE含量与采用稀HNO3溶样得到的结果并没有显著的差别。这表明SJ3的REE可能主要不是直接来自于地表土壤中难溶的硅酸盐矿物,而可能是土壤风化释放的REE通过吸附在颗粒/胶体态物质的表面,经过岩溶地下水的搬运而沉积到SJ3中。由此认为,采用稀酸溶样基本上可以将石笋SJ3的REE释放出来。

     

  • [1] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294:2345-2347.
    [2] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the Last Interglacial Asian Monsoon[J]. Science, 2004, 304:575-578.
    [3] Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an1810-Year Chinese cave record[J]. Science, 2008, 322:940-942.
    [4] Cheng H, Edwards R L, Broecker W S, et al. Ice age terminations[J]. Science, 2009, 236:248-252.
    [5] Hu C Y, Huang J H, Fang N Q, et al. Adsorbed silica in stalagmite carbonate and its relationship to past rainfall[J]. Geochimica et Cosmochimica Acta, 2005, 69:2285-2292.
    [6] Li H C, Ku T L, You C F, et al. 87Sr/86Sr and Sr/Ca in speleothems for paleoclimate reconstruction in Central China between70 and280 kyr ago[J]. Geochimica et Cosmochimica Acta, 2005, 69:3933-3947.
    [7] Zhou HY, Chi B Q, Lawrence M, et al. High resolution and precisely dated record of weathering and hydrological dynamics recorded by manganese and rare earth elements in a stalagmite from central China[J]. Quaternary Research, 2008, 69:438-446.
    [8] Zhou H Y, Feng Y X, Zhao J X, et al. Deglacial variations of Sr and 87Sr/86Sr ratio recorded by a stalagmite from Central China and their association with past climate and environment[J]. Chemical Geology, 2009, 268:233-247.
    [9] Fairchild I J Pauline C T. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28:449-469.
    [10] Clemens S C, Prell W L, Sun Y, et al. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothemd18 O[J]. Paleoceanography, 2010, 25:PA4207, doi: 10.1029/2010PA001926.
    [11] Dayem K E, Molnar P, Battisti D S, et al. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia[J]. Earth and Planetary Science Letters, 2010, 295:219-230.
    [12] Cullers R L, Basu A, Suttner L J. Geochemical signature of provenance in sandsize mineral in soil and stream near the tabacco root batholith, Montana, USA[J]. Chemical Geology, 1988, 70:335-348.
    [13] Murray RW, Brink M R, Brumsack H J, et al. REE in Japan Sea sediments and diagenetic behavior of Ce/Ce *: Results from O DP Log127[J]. Geochimica et Cosmochimica Acta, 1991, 55:2453-2466.
    [14] Richter D K, G?tte T, Niggemann S, et al. REE3+ and M n2+ activated cathodoluminescence in lateglacial and Holocene stalagmites of central Europe: evidence for climatic processes[J]. The Holocene, 2004, 14:759-767.
    [15] Borsato A, Frisia S, Fairchild I J, et al. Trace element distribution in annual stalagmite laminae mapped by micrometer resolution X-ray fluorescence: implications for incorporation of environmentally significant species[J]. Geochimica et Cosmochimica Acta, 2007, 71:1494-1512.
    [16] Zhou H Y, Wang Q, Zhao J X, et al. Rare earth elements and yttrium in a stalagmite from Central China and potential paleo climatic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270:128-138.
    [17] Tessier A, Campbll P G C, Bisson M. Sequential extraction procedure for speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51:844-851.
    [18] Elderfield H, Upstill-Goddard R, Sholkovitz E R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta, 1990, 54:971-991.
    [19] Sholkovitz E R. Chemical evolution of rare earth elements: fractionation between colloidal and solution phases of filtered river water[J]. Earth and Planetary Science Letters, 1992, 114:77-84.
    [20] Tanizaki Y, Shimokawa T, Nakamura M. Physicochemical speciation of trace elements in river waters by size fractionation[J]. Environmental Science and Technology, 1992, 26:1433-1444.
  • 加载中
计量
  • 文章访问数:  2105
  • HTML浏览量:  387
  • PDF下载量:  1402
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-03
  • 发布日期:  2011-09-25

目录

    /

    返回文章
    返回