Comparative study on karst ground water simulation between GM(1, 1)decomposition model and ARIMA model: A case study on discharge simulation of the Liulin Spring
-
摘要: 本文运用GM(1,1)分解模型和ARIMA模型分别模拟柳林泉流量。根据影响特征将泉水流量变化分为两个时段研究:1957—1973年泉水流量处于自然状态;1974—2009年泉水流量受气候变化和人类活动双重影响。运用第1时段的数据建模获得自然状态下泉水流量的模型,将模型外推,获得第2阶段自然状态下泉水流量,然后根据水量平衡原理,减去同期实测流量,获得人类活动对泉水流量衰减的贡献。GM(1,1)分解模型的结果显示,从20世纪70年代到21世纪初柳林泉衰减量为2.26m3/s;ARIMA模型的结果为2.32m3/s;与同期实际衰减量2.27m3/s比,相对误差分别为0.44%和2.20%,表明两种模型都适用于泉水流量的模拟。对比人类活动和气候变化对柳林泉流量衰减的贡献,两个模型得到同样结果,即人类活动的贡献是气候变化的8~9倍。实证研究显示,GM(1,1)模型适用于指数序列的模拟,对具有周期波动的泉水流量,可通过周期修正提高精度;而ARIMA模型能够较好地反映泉水流量相对于降水量的时间滞后效应,能比较准确地模拟泉水流量与降水量的量化关系。
-
关键词:
- GM(1,1)分解模型 /
- ARIMA模型 /
- 分时段分析 /
- 岩溶泉流量
Abstract: The discharge of the Liulin spring is simulated with GM(1,1) decomposition model and ARIMA model respectively. According to the hydrological characteristics, the Liulin spring flow series could be divided into two periods. First, from 1957 to 1973 the spring flow was under natural state; second, from 1974 to 2009 the spring flow was impacted by both climate change and human activities. Using the data of first period, the spring flow under the natural state is fitted with GM(1,1) decomposition model and ARIMA model, and then the models are extrapolated to obtain the second periods’spring flow under the natural state. According the water balance principle, the spring flow decrement contributed by human activities is acquired by subtracting the observed discharge from simulated spring flow of the second period under the natural state. Thus, it is differentiated the effects of human activities from climate change. The simulated Liulin Springs’attenuation from 1970s to early 21st century is 2.26 m3/s by GM(1,1)decomposition model and 2.36 m3/s by ARIMA model with the relative error being 0.44% and 2.20% respectively, showing both GM(1, 1)decomposition mode land ARIMA model are suitable for spring flow simulation. Comparing the effects of human activities and climate change to the depletion of the Liulin Spring’s discharge, the authors find that the contribution of human activities is 8 to 9 times higher than that of the climate change. The empirical studies have shown that the GM (1,1) model is of high precision in simulating the exponential series. It can also improve accuracy by periodic amendment, when simulate the spring flow with periodic fluctuations. ARIMA model could reflect time-lag between precipitation and spring discharge and accurately simulate their quantitative relation.-
Key words:
- GM(1,1)decomposition model /
- ARIMA model /
- piecewise analysis /
- karst spring discharge
-
[1] 郭纯青.岩溶地下水评价的灰色系统理论与方法研究[M].北京:地质出版社,1993,4-8. [2] 夏军.灰色系统水文学[M].武汉:华中理工大学出版社,2000,24-53. [3] 刘思峰,党耀国,方志耕,等.灰色系统理论及其应用[M].北京:科学出版社,2004. [4] 肖新平,宋中民,李峰.灰技术基础及其应用[M].北京:科学出版社,2005. [5] 王学萌,聂宏声.灰色系统模型在农村经济中的应用[M].武汉:中理工大学出版社,1989. [6] 王学萌.等维灰数递补动态预测[J].华中工学院学报,1989,4:9-16. [7] 张岐山.灰朦胧集的差异信息理论[M].北京:石油工业出版社,2002. [8] Hao Y H, Yeh T-C J, Gao Z Q, et al. A Gray System Model for Studying the Response to Climatic Change: the Liulin Karst Spring, China[J]. Journal of Hydrology, 2006, 328(3-4):668-676. [9] Hao Y H, Yeh T-C J, Wang Y R, et al. Analysis of Karst Aquifer Spring flows with a Gray System Decomposition Model[J]. Ground Water, 2007, 45(1):46-52. [10] 郝永红,王玮,王国卿,等.气候变化及人类活动对中国北方岩溶泉的影响[J].地质学报,2009,83(1):139-144. [11] Hao Y H, Wang Y J, Zhu Y E, et al. Response of Karst Springs to Climate Change and Anthropogenic Activities: the Niangziguan Springs, China[J]. Progress in Physical Geography, 2009, 33(5):634-649. [12] Omer Faruk Durdu. Application of Linear Stochastic Models for Drought Forecasting in the Buyuk Menderes River Basin, Western Turkey[J]. Stoch Environ Res Risk Assess, 2010, D OI10. 1007/s00477-010-0366-3. [13] Mishra A K, Desai V R. Drought Forecasting using Stochastic Models[J]. Stoch Environ Res Risk Assess, 2005, 19:326-339. [14] J. Carlos García Díaz. Monitoring and Forecasting Nitrate Concentration in the Groundwater using Statistical Process Control and Time Series Analysis: a Case Study[J]. Stoch Environ Res Risk Assess, 2010, D OI10. 1007/s00477-010-0371-6. [15] S. Mohan and S Vedula. Multiplicative Seasonal ARIM A Model for Longterm Forecasting of Inflows[J]. Water Resources Management, 1995, 9:115-126. [16] 吴志峰,胡永红,李定强,等.城市水生态足迹变化分析与模拟[J].资源科学,2006,5(28):152-156. [17] Fan J, and Yao Q. Nonlinear time series: Nonparametric and parametric 517 methods [M]. New York, Springer-Verlag. 2003. [18] 吴吉春,薛禹群,黄海,等.山西柳林泉局部区域溶质运移二维数值模拟[J].水利学报,2001,(8):38-43. [19] 吴吉春,薛禹群,黄海,等.山西柳林泉裂隙发育区域溶质运移三维数值模拟[J].南京大学学报,2000,36(6):728-734. [20] 吴吉春,薛禹群,黄海,等.山西柳林泉域地下水流数值模拟[J].水文地质工程地质,2001,(2):18-20. [21] Wang Y, Ma T, Luo Z. Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: a case study in the Liulin karst system, northwestern China[J]. Journal of hydrology. 2001,246:223-234. [22] 马腾,王国卿,张庆保.山西省柳林泉域地表径流参透量的灰色预测[J].地球科学——中国地质大学学报,1997,22(1):90-93. [23] 韩行瑞,鲁荣安,李庆松,等.山西岩溶大泉研究[M].北京:地质出版社,1993,294-305. [24] 王亚捷,郝永红,王学萌,等.岩溶地下水灰色系统分析软件开发[J].中国岩溶,2010,29(4):389-395. [25] 何宇彬,邹成杰.中国南北方喀斯特水特征对比[J].中国岩溶,1991,15(3):259-268. -
点击查看大图
计量
- 文章访问数: 2554
- HTML浏览量: 459
- PDF下载量: 1730
- 被引次数: 0
下载: