Correlation analysis between low-flow recession coefficient and surface landform characteristics in karst basin
-
摘要: 针对喀斯特流域地形、地貌对枯季径流的调蓄作用,选用乌江流域思南站以上19个水文站点枯季流量资料进行枯季径流衰减规律分析。根据枯季径流衰减曲线的拟合将枯季径流分为快速裂隙流和慢速裂隙流两段退水过程,并计算相应的衰减系数。通过对衰减系数与流域地表形态特征的单因素和多因素回归分析,确定影响衰减系数的主要影响因子为高程特征值和地形指数特征值,并建立两者与衰减系数的二元非线性回归方程(a1=0.781-0.266?ln(x)+0.633?ln(y),a2=0.061-0.016?ln(x)+0.044?ln(y)),其置信区间都大于99%,说明曲线整体拟合显著,为枯期径流衰减系数区域化分析及无/缺资料流域的水文模拟提供基础。Abstract: In light of the storage and adjustment for runoff by topography and landform features in dry season, daily observed flow data during dry seasons from19 hydrology stations located up the Sinan station of the Wujiang River are analyzed to find out base flow recession law. According to the characteristics of low flow recession curve, the base flow is divided into two parts, fast fissure flow and slow fissure flow, and the corresponding recession coefficient is calculated. Based on the single factor and multi-factor regression analysis between the recession coefficient and the basin's landform features, elevation eigenvalue and topographic index eigenvalue are determined as the main factors affecting the recession coefficient. The dual non-linear regression equations are established with these two eigenvalues and the recession coefficient(a1=0.781-0.266?ln(x)+0.633?ln(y)and a2=0.061-0.016?ln(x)+0.044?ln(y)),their confidence intervals are greater than99%,so these two curves fit significantly and these equations can be used to regionalize the recession coefficients and to provide the basis for hydrological simulation in ungauged basins.
-
Key words:
- karst basin /
- low-flow /
- recession coefficient
-
[1] Baedke S J, Krothe N C.Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis[J]. Water Resources Research, 2001, 37(1):13-19. [2] RoveyII CW. Assessing flow systems in carbonate aquifers using scale effects in hydraulic conductivity[J]. Environmental Geology,1994,24:244-253. [3] 李秀云,汤奇成,傅肃性.中国河流的枯水研究[M].北京:海洋出版社,1993. [4] Wright E. Catchment characteristics influencing low flows[J]. Water and Water Engineering,1970,74(11):468-471. [5] 李秀云,傅肃性,宋现锋,等.遥感枯水下垫面要素分析与估算应用研究——以澜沧江支流黑江的景谷河流域为例[J].资源科学,1999,21(3):6-10. [6] Vogel Richard M, Kroll Charles N. Estimation of base flow recession constants[J]. Water Resources Management,1996,10(4):303-320. [7] Zarrin H,Sharifi F,Vafakhah M,et al. Regional analysis of low flow in Karkheh and Karoon Watersheds[J].Journal of Applied Sciences,2009,9(6):1141-1146. [8] 罗书文,梁虹,杨桃,等.基于分形理论的喀斯特流域枯水资源影响因素分析[J].安徽水利水电职业技术学院学报,2009,9(1):8-10. [9] 李瑞玲.贵州岩溶地区土地石漠化形成的自然背景及其空间地域分异[D].贵阳:中国科学院地球化学研究所,2004:15-20. [10] Nash J E,Sutcliffe J V.Riverflow forecasting through conceptual models partI——A discussion of principles[J].Journal of Hydrology,1970,10(3):282-290. [11] 高祥宝,董寒青.数据分析与SPSS应用[M].北京:清华大学出版社,2007:212-249. [12] 李红霞.无径流资料流域的水文预报研究[D].大连:大连理工大学,2009:37-38. [13] 俞锦标,章海生.贵州普定岩溶地貌[J].中国岩溶,1988,7(2):163-172. [14] 王在高,梁虹,杨明德.喀斯特流域地貌类型对枯水径流的影响——以贵州省河流为例[J].地理研究,2002,21(4):441-448. [15] 汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005:207-208. [16] 薛显武,陈喜,张志才,等.基于地形因子特征值的喀斯特流域地貌类型判别[J].中国岩溶,2009,28(2):175-180. -
点击查看大图
计量
- 文章访问数: 2221
- HTML浏览量: 410
- PDF下载量: 2344
- 被引次数: 0
下载: