A practical use of 34S in the investigation of karst groundwater resource in North China
-
摘要: 从地球化学背景方面看,在以奥陶系碳酸盐岩为含水介质的中国北方多数岩溶地下水浅循环系统中,岩溶水的硫酸根有三个主要来源,分别是水对中奥陶统中石膏的溶解、岩溶含水层上覆煤系地层中黄铁矿氧化溶解并补给岩溶水以及与土层密切相关的地表水中硫酸根的加入。上述三类水的δ34S同位素值的差别很大,中奥陶统中石膏硫同位素最重,δ34S值一般在20‰~32‰;煤系地层中黄铁矿的硫同位素最轻,一般在-10‰~10‰,多数低于4‰;而地表水的硫同位素介于上述二者之间,δ34S值较稳定分布在7‰~12‰之间。利用这一具有示踪意义的特点,我们对一些泉域系统的岩溶地下水补、排关系以及一些水化学成分的来源进行了成功的解释,为进一步认识岩溶水文地质条件提供了有力的佐证。Abstract: In view of geo-chemical background, there are three major origins for sulfate form the karst water in most karst shallow circulation system in North China, whose aquifers is Ordovician carbonate rock: (1) dissolution of gypsum in the middle of Ordovician;(2) oxidation and dissolution of the pyrite in the overlying strata of coal measures, which recharge the karst groundwater; (3) sulfate from surface water that is directly related with top soil. Many tests indicate that the 34S value in groundwater changes greatly among different sulfate radical origins. Generally, the sulfate isotope from sulfate radical in the middle of Ordovician is heaviest in the three kinds of water with a δ34S value of 20‰~ 32‰.while,the sulfate isotope from the pyrite in coal measures is lightest with a δ34S value of -10‰~ 10‰, which is mostly less than 4‰. The sulfate isotope from surface water is between the two kinds of origins mentioned above with a δ34S value of 7‰~12‰. In light of the tracing significance features, the relations between recharge and discharge and the origins of some hydro-chemical elements in some spring systems are successfully interpreted, which give powerful proof for further understanding of the hydro-geological conditions.
-
Key words:
- Ordos basin /
- karst groundwater /
- sulfur isotope
-
[1] 张之淦.应用硫同位素方法研究天然水中SO42-离子起源一例[C]// 中国矿物岩石地球化学学会同位素专业委员会.全国同位素地球化学学术讨论会(摘要汇编).1986:316-316. [2] 刘再华.娘子关泉群水的来源再研究[J].中国岩溶,1989,8(3):200-207 [3] 龚自珍,李兆林,张之淦,等.山西潞安煤矿区兼及辛安村泉域岩溶水同位素研究[J].地质学报,1994,68(1):71-85. [4] 李义连,王焰新,刘剑,等. 娘子关泉域岩溶地下水SO42 - 、Ca2 + 、Mg2 +污染分析[ J ]. 地质科技情报, 1998,17( + 2): 111-114. [5] 顾慰祖, 林曾平, 费光灿,等. 环境同位素硫在大同南寒武、奥陶系地下水资源研究中的应用[J].水科学进展,2000,11(1):14-20. [6] 梁永平,张江华,霍建光,等. 阳泉市地下水资源评价报告[ R ]. 2004. [7] 段光武 ,梁永平. 应用34 S同位素分析阳泉市岩溶地下水硫酸盐污染[J].西部探矿程,2007,117(1):110-112. [8] Aharon P, Fu B. Sulfur and oxygen isotopes of coeval sulfate sulfide in pore fluids of cold seep sediments with sharp redox gradients[J]. Chemical Geology, 2003, 195:201-218. [9] 冯东, 陈多福, 苏正, 等. 海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征[J]. 现代地质, 2005, 19 ( 1 ) : 26- 32. [10] 陈祈, 王家生, 李清,等.海洋天然气水合物系统硫同位素研究进展[J].现代地质,2007,121(11):111-115. [11] Aharon P, Fu B. Microbial sulfate reduction rates and sulfur andoxygen isotope fractio-nations at oil and gas seeps in deepwater Gulf of Mexico[ J ]. Geochimica et Cosmochimica Acta, 2000,64 (2): 233-246. [12] 洪业汤,张鸿斌,朱泳煊. 中国煤的硫同位素组成特征及燃烧过程硫同位素分馏[J]. 中国科学(B辑),1992, 37 (8): 86-873. [13] 高连芬,刘桂建, Chou Chen-Lin,等.中国煤中硫的地球化学研究[J]. 矿物岩石地球化学通报,2005, 24(1) : 79-83. [14] 高宝玉,梁永平,王维泰. 柳林泉域岩溶水特点与地质背景条件分析[J]. 中国岩溶,2008,27(3):209-214. [15] 洪业汤,顾爱良,王宏卫,等. 黄河硫同位素组成与青藏高原隆起[J]. 第四纪研究,1995,(4):360-366. -
点击查看大图
计量
- 文章访问数: 1726
- HTML浏览量: 425
- PDF下载量: 519
- 被引次数: 0
下载: