• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灰岩区垂向溶蚀裂隙多尺度地球物理探测方法研究

习春飞 牛广天 李凡 陈迪 陈华鹏 雷奇果

习春飞,牛广天,李 凡,等. 灰岩区垂向溶蚀裂隙多尺度地球物理探测方法研究[J]. 中国岩溶,2025,44(6):1291-1300 doi: 10.11932/karst2025y025
引用本文: 习春飞,牛广天,李 凡,等. 灰岩区垂向溶蚀裂隙多尺度地球物理探测方法研究[J]. 中国岩溶,2025,44(6):1291-1300 doi: 10.11932/karst2025y025
XI Chunfei, NIU Guangtian, LI Fan, CHEN Di, CHEN Huapeng, LEI Qiguo. Study on multi-scale geophysical detection methods for vertical dissolution fissures in limestone areas[J]. CARSOLOGICA SINICA, 2025, 44(6): 1291-1300. doi: 10.11932/karst2025y025
Citation: XI Chunfei, NIU Guangtian, LI Fan, CHEN Di, CHEN Huapeng, LEI Qiguo. Study on multi-scale geophysical detection methods for vertical dissolution fissures in limestone areas[J]. CARSOLOGICA SINICA, 2025, 44(6): 1291-1300. doi: 10.11932/karst2025y025

灰岩区垂向溶蚀裂隙多尺度地球物理探测方法研究

doi: 10.11932/karst2025y025
详细信息
    作者简介:

    习春飞(1981-),男,高级工程师,主要从事工程地质勘察及岩土设计工作。E-mail:330188626@qq.com

    通讯作者:

    李凡(1990-),男,博士,讲师,主要从事电磁法勘探及地质灾害监测的相关研究工作。E-mail:lifan@xust.edu.cn

  • 中图分类号: P631.3

Study on multi-scale geophysical detection methods for vertical dissolution fissures in limestone areas

  • 摘要: 针对灰岩区垂向溶蚀裂隙隐蔽性强、探测精度要求高的难题,提出先采用高密度电阻率法(Electrical Resistivity Tomography,简称为ERT)宏观圈定异常位置,再通过跨孔电磁波CT成像精细化探测的多尺度综合探测体系。通过数值模拟对比高密度电阻率法的温纳装置、三极装置、偶极−偶极装置的垂向裂隙识别能力,选用横向分辨率、抗噪性更优的偶极–偶极装置进行场地实验,通过高密度电阻率法快速圈定低阻异常带,并利用跨孔电磁波CT成像精细化解析裂隙发育特征。结果表明:偶极–偶极装置可有效重构垂向裂隙空间展布,电磁波CT强吸收异常区与ERT低阻异常带空间高度一致,钻孔取芯表明物探圈定的裂隙发育带岩体破碎程度明显高于相邻层位,验证了物探结果的可靠性,该技术体系可为岩溶区隐伏裂隙识别、工程稳定性评价及地质灾害防治提供科学支撑。

     

  • 图  1  研究区地质图

    1.覃家庙群灰岩 2.三游洞群灰岩 3.南津关组灰岩 4.石门组泥岩、砂岩 5.五龙组砂岩、砾岩 6.第四系更新统砂土、砾石 7.第四系全新统细沙、砂土 8.研究区域 9.断层

    Figure  1.  Geological map of the study area

    图  2  (a)研究区卫星图(b)无人机航拍图

    Figure  2.  (a) Satellite image of the study area (b) Aerial image captured by drone

    图  3  高密度电阻率法温纳装置工作示意图

    Figure  3.  Schematic diagram of the Wenner array configuration for the Electrical Resistivity Tomography

    图  4  (a)电阻率模型 (b)温纳装置反演结果 (c)三极装置反演结果 (d)偶极−偶极装置反演结果

    Figure  4.  (a) Resistivity model (b) Inversion results of the Wenner array (c) Inversion results of the three−pole array (d) Inversion results of the dipole−dipole array

    图  5  各装置反演结果

    (a)三极装置3%噪声 (b)三极装置6%噪声 (c)三极装置9%噪声 (d)三极装置15%噪声 (e)三极装置27%噪声 (f)偶极−偶极装置3%噪声 (g)偶极−偶极装置6%噪声 (h)偶极−偶极装置9%噪声 (i)偶极−偶极装置15%噪声 (j)偶极−偶极装置27%噪声

    Figure  5.  Inversion results of each array

    (a) Three-pole array with 3% noise (b) Three-pole array with 6% noise (c) Three-pole array with 9% noise (d) Three-pole array with 15% noise (e) Three-pole array with 27% noise (f) Dipole-dipole array with 3% noise (g) Dipole-dipole array with 6% noise (h) Dipole-dipole array with 9% noise (i) Dipole-dipole array with 15% noise (j) Dipole-dipole array with 27% noise

    图  6  (a)研究区要素鸟瞰图(西) (b)研究区要素鸟瞰图(南)

    Figure  6.  (a) Aerial overiew of the elements in the study area (west view) (b) Aerial overiew of the elements in the study area (south view)

    图  7  偶极−偶极装置反演电阻率对数成果图

    Figure  7.  Result map of inverted logarithmic apparent resistivity for the dipole-dipole array

    图  8  (a)跨孔电磁波CT成像成果图 (b)解释成果图 (c)岩芯照片

    Figure  8.  (a)Result map of the cross-hole electromagnetic wave CT imaging (b) Interpretation result (c) Interpretation result of the core photo

    表  1  常见高密度电阻率法装置优点与装置系数

    Table  1.   Advantages and coefficients of the high-density resistivity method devices

    装置类型优点装置系数
    温纳装置抗干扰能力强、垂向分辨率较高2πa
    偶极−偶极装置横向分辨率高nπ(n+1)(n+2)a
    三极装置探测深度较大、横向分辨率较高2nπ(n+1)a
    斯伦贝谢装置旁侧地质体影响较小、垂向分辨率较高nπ(n+1)a
    下载: 导出CSV
  • [1] 刘永亮, 张伟, 刘振宇, 易连兴, 吴秋菊, 梁楠, 甘伏平, 邬健强, 韩凯. 高密度电阻率法和音频大地电磁法在猴场滑坡结构探测中的应用[J]. 中国岩溶, 2024, 43(2): 441-453.

    LIU Yongliang, ZHANG Wei, LIU Zhenyu, YI Lianxing, WU Qiuju, LIANG Nan, GAN Fuping, WU Jianqiang, HAN Kai. Application of high-density resistivity method and audio-frequency magnetotelluric method in the detection of landslide structure in Houchang town[J]. Carsologica Sinica, 2024, 43(2): 441-453.
    [2] 陈贻祥, 黄奇波, 覃小群, 韩凯, 肖琼, 苗迎, 杜成亮, 贺德煌. 自然电场法与高密度电法联作在西江中下游岩溶区找水中的应用[J]. 中国岩溶, 2022, 41(5): 684-697.

    CHEN Yixiang, HUANG Qibo, QIN Xiaoqun, HAN Kai, XIAO Qiong, MIAO Ying, DU Chengliang, HE Dehuang. Application of self-potential and high-density resistivity method to the water exploration in karst terrain of middle-lower reaches of Xijiang River[J]. Carsologica Sinica, 2022, 41(5): 684-697.
    [3] 马吉静. 高密度电阻率法的异常识别和推断: 以溶洞探测和寻找地下水为例[J]. 地球物理学进展, 2019, 34(4): 1489-1498.

    MA Jijing. Anomaly identification and inference of high density resistivity method: take karst cave exploration and groundwater exploration as an example.[J]. Progress in Geophysics, 2019, 34(4): 1489-1498.
    [4] 梁添才, 陈清. 高密度电法三极装置在岩溶探测中的应用[J]. 工程地球物理学报, 2019, 16(5): 770-774.

    LIANG Tiancai, CHEN Qing. Application of high-density electrical three-pole device to karst exploration[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5): 770-774.
    [5] 胡雄武, 李红文. 正反三极电阻率联合反演在水库渗漏检测中的应用[J]. 水利水电技术, 2018, 49(10): 173-178.

    HU Xiongwu, LI Hongwen. Application of joint inversion of forward and reverse pole-dipole resistivity in reservoir leakage detection[J]. Water Resources and Hydropower Engineering, 2018, 49(10): 173-178.
    [6] 刘道涵, 徐俊杰, 齐信, 邬健强. 基于高密度电法的城市岩溶地下水通道三维电性成像[J]. 中国岩溶, 2023, 42(6): 1331-1338.

    LIU Daohan, XU Junjie, QI Xin, WU Jianqiang. Three-dimensional electrical imaging of urban karst groundwater channels based on electrical resistivity tomography[J]. Carsologica Sinica, 2023, 42(6): 1331-1338.
    [7] 刘四新, 倪建福. 井间电磁法综述[J]. 地球物理学进展, 2020, 35(1): 153-165.

    LIU Sixin, NI Jianfu. Review for cross-hole electromagnetic method[J]. Progress in Geophysics, 2020, 35(1): 153-165.
    [8] 黎华清, 徐远光, 甘伏平, 赵伟, 卢建集. 孔间电磁波CT法在左江电站火成岩坝基风化结构评价中的应用[J]. 岩土力学, 2010, 31(S1): 430-434.

    LI Huaqing, XU Yuanguang, GAN Fuping, ZHAO Wei, LU Jianji. Application of cross-well electromagnetic wave CT technique to evaluating weathered igneous rock dam structure of Zuojiang river power station[J]. Rock and Soil Mechanics, 2010, 31(S1): 430-434.
    [9] 张华, 张贵, 王宇, 方永林, 代旭升, 王波, 何绕生, 罗为群, 蓝芙宁. 岩溶断陷盆地跨孔CT成像探测岩溶孔隙及赋水状态的实验研究[J]. 中国岩溶, 2020, 39(5): 737-744.

    ZHANG Hua, ZHANG Gui, WANG Yu, FANG Yonglin, DAI Xusheng, WANG Bo, HE Raosheng, LUO Weiqun, LAN Funning. Experimental study on the detection of karst pores by cross-hole CT imaging and groundwater occurrence in the Luxi karst fault-depression basin[J]. Carsologica Sinica, 2020, 39(5): 737-744.
    [10] 代方园, 高扬, 宿庆伟, 胡韬, 耿付强, 董亚楠. 瞬变电磁与跨孔CT成像探测岩溶分布及形态特征的应用: 以山东省济南地区为例[J]. 中国岩溶, 2022, 41(2): 308-317, 328.

    DAI Fangyuan, GAO Yang, SU Qingwei, HU Tao, GENG Fuqiang, DONG Yanan. Application of transient electromagnetism and cross-hole CT imaging to detect karst distribution and morphological characteristics∶A case study of Jinan, Shandong Province[J]. Carsologica Sinica, 2022, 41(2): 308-317, 328.
    [11] 吴岩, 顾汉明, 刘铁, 曹哲明. 电磁波CT在碳酸盐岩缝洞勘察中的应用[J]. 工程地球物理学报, 2009, 6(2): 185-189.

    WU Yan, GU Hanming, LIU Tie, Cao Zheming. Application of electromagnetic CT to cavern and fracture prospecting in carbonate rock[J]. Chinese Journal of Engineering Geophysics, 2009, 6(2): 185-189.
    [12] 郑智杰, 陈贻祥, 甘伏平. 岩溶区岩土层地球物理性质浅析: 以吉利岩溶塌陷区为例[J]. 地球物理学进展, 2016, 31(2): 920-927.

    ZHENG ZhiJie, CHEN Yixiang, GAN Fuping. Brief analysis of the geophysical properties of rock and soil in karst area-taking geely karst collapse area as an example[J]. Progress in Geophysics, 2016, 31(2): 920-927.
    [13] 何禹, 李永涛, 朱亚军. 钻孔电磁波CT技术在深部岩溶勘探中的应用[J]. 工程地球物理学报, 2010, 7(4): 451-455. doi: 10.1088/1742-2140/7/4/M01

    HE Yu, LI Yongtao, ZHU Yajun. Application of drilling electromagnetic CT to deep cavern and fracture prospecting[J]. Chinese Journal of Engineering Geophysics, 2010, 7(4): 451-455. doi: 10.1088/1742-2140/7/4/M01
    [14] 李金铭. 地电场与电法勘探[M]. 北京: 地质出版社, 2005.

    LI Jinming. Geoelectric field and electrical prospecting [M]. Beijing: Geological Publishing House, 2005.
    [15] 郑冰, 李柳德. 高密度电法不同装置的探测效果对比[J]. 工程地球物理学报, 2015, 12(1): 33-39. doi: 10.1088/1742-2132/12/1/33

    ZHENG Bing, LI Liude. The exploring effect comparison of different settings in resistivity tomography[J]. Chinese Journal of Engineering Geophysics, 2015, 12(1): 33-39. doi: 10.1088/1742-2132/12/1/33
    [16] 马志飞, 刘鸿福, 叶章, 杨建军. 高密度电法不同装置的勘探效果对比[J]. 物探装备, 2009, 19(1): 52-55, 67.

    MA Zhifei, LIU Hongfu, YE Zhang, YANG Jianjun. Comparison of exploration effect for different devices of high-density electrical prospecting[J]. Equipment for Geophysical Prospecting, 2009, 19(1): 52-55, 67.
    [17] 严加永, 孟贵祥, 吕庆田, 张昆, 陈向斌. 高密度电法的进展与展望[J]. 物探与化探, 2012, 36(4): 576-584.

    YAN Jiayong, MENG Guixiang, LYU Qingtian, ZHANG Kun, CHEN Xiangbin. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4): 576-584.
    [18] 吴以仁. 钻孔电磁波法[M]. 北京: 地质出版社, 1982.

    WU Yiren. Borehole electromagnetic wave method [M]. Beijing: Geological Publishing House, 1982.
    [19] 罗彩红, 邢健, 郭蕾, 秦尚林. 基于井间电磁CT探测的岩溶空间分布特征[J]. 岩土力学, 2016, 37(S1): 669-673.

    LUO Caihong , XING Jian , GUO Lei, QIN Shanglin. Spatial distribution characteristics of karst based on cross hole electromagnetic computerized tomography technique[J]. Rock and Soil Mechanics, 2016, 37(S1): 669-673.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  5
  • HTML浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-22
  • 录用日期:  2025-10-31
  • 修回日期:  2025-10-27
  • 刊出日期:  2025-12-25

目录

    /

    返回文章
    返回