• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重庆奉节羊圈河流域岩溶水文地质条件评价及成库渗漏分析

吴建 秘向丽 兰梦

吴 建,秘向丽,兰 梦. 重庆奉节羊圈河流域岩溶水文地质条件评价及成库渗漏分析[J]. 中国岩溶,2025,44(0):1-15 doi: 10.11932/karst2025y014
引用本文: 吴 建,秘向丽,兰 梦. 重庆奉节羊圈河流域岩溶水文地质条件评价及成库渗漏分析[J]. 中国岩溶,2025,44(0):1-15 doi: 10.11932/karst2025y014
WU Jian, MI Xiangli, LAN Meng. Evaluation of karst hydrogeological conditions and reservoir leakage analysis in the basin of Yangquan River, Fengjie County, Chongqing City[J]. CARSOLOGICA SINICA. doi: 10.11932/karst2025y014
Citation: WU Jian, MI Xiangli, LAN Meng. Evaluation of karst hydrogeological conditions and reservoir leakage analysis in the basin of Yangquan River, Fengjie County, Chongqing City[J]. CARSOLOGICA SINICA. doi: 10.11932/karst2025y014

重庆奉节羊圈河流域岩溶水文地质条件评价及成库渗漏分析

doi: 10.11932/karst2025y014
基金项目: 上海勘测设计研究院有限公司科研项目资助(编号:2024JC(831)-001),上海启明星扬帆专项项目资助(编号:24YF2728400)
详细信息
    作者简介:

    吴建(1994-),男,博士后,长期从事水文地质工程地质等领域的研究工作。E-mail:wu_jian7@ctg.com.cn

  • 中图分类号: P641.134;U453.61

Evaluation of karst hydrogeological conditions and reservoir leakage analysis in the basin of Yangquan River, Fengjie County, Chongqing City

  • 摘要: 重庆奉节羊圈河流域地形陡峭,岩溶水文地质条件复杂,岩溶渗漏成为抽水蓄能电站建设的突出问题。本文利用地质调查测绘、水文地质试验、岩溶水系统分析、数值模拟以及解析计算等多种方法,评价了羊圈河流域岩溶水文地质条件,系统地分析了羊圈河成库过程中岩溶渗漏类型、渗漏位置、渗漏通道以及渗漏量。结果表明:羊圈河流域岩溶主要集中在碳酸盐岩高纯度带、构造裂隙发育带、排泄基准面附近,且发育程度随地表深度的增加而逐渐降低,形成了表部岩溶强发育和内部岩溶弱发育的双重壳核结构;岩溶水系统为典型的西南背斜山地岩溶裂隙−管道−地下河类型,在空间上可划分为背斜−强岩溶型、向斜−强岩溶型和向斜−中等岩溶型三类;羊圈河成库过程中在坝基和左右岸可能发生溶隙型、管道型以及管道-裂隙型三种渗漏类型;解析解和数值模拟结果表明羊圈河成库过程中可能会发生严重的坝基和绕坝渗漏,亟需高效合理的防渗控制措施来处理左右岸岩溶地下水管道系统以达到建坝成库条件。

     

  • 图  1  工程区岩溶水文地质图

    Figure  1.  Regional karst hydrogeological map

    图  2  羊圈河流域岩溶发育分布规律

    Figure  2.  Distribution of karst development in the Yangquan River basin

    图  3  羊圈河下水库坝轴线A-A'岩溶水系统地表和地下分水岭剖面图

    Figure  3.  Surface and groundwater divide profile of karst groundwater system along the axis A-A' of the lower reservoir in the Yangquan River

    图  4  羊圈河下水库岩溶水文地质结构: (a)平面分布图, (b) 向斜-强岩溶型剖面图

    Figure  4.  Karst hydrogeological structure of the lower reservoir in the Yangquan River: (a) plane perspective, (b) syncline-strong karst profile

    图  5  羊圈河下水库与桃源河河间地块地下水流场示意图

    Figure  5.  Schematic diagram of groundwater flow in Yangquan River Lower Reservoir and Taoyuan River Inter-River Plot

    图  6  羊圈河及其邻谷位置示意图

    Figure  6.  Schematic diagram of the location of Yangquan River and its adjacent valleys

    图  7  羊圈河下水库压水试验统计图: (a)坝基; (b)左右岸

    Figure  7.  Statistics of packer tests on the lower reservoir in the Yangquan River: (a) dam foundation and (b) left and right banks

    图  8  羊圈河下水库坝轴线工程地质剖面图

    Figure  8.  Geological section of the lower reservoir in the Yangquan River along the dam axis

    图  9  羊圈河下水库地下水示踪试验示意图: (a) 岩溶管道地下水推测流向; (b) 左岸岩溶泉S21; (c)出露点PA (下游河谷80 m)

    Figure  9.  Schematic diagram of groundwater tracing tests in the lower reservoir in the Yangquan River: (a) Predicted groundwater flow direction in karst pipelines, (b) karst spring S21, and (c) point PA in river valley 80 m away from the dam axis

    图  10  (a)羊圈河库区三维有限差分模型; (b)模型范围与边界条件

    Figure  10.  (a) 3D finite difference model of the lower reservoir in the Yangquan River and (b) model extent and boundary conditions

    图  11  地下水长观孔数值解与监测值对比

    Figure  11.  Comparison between numerical solutions and monitoring values of groundwater level in long-term boreholes

    图  12  模型参数敏感性分析

    Figure  12.  Sensitivity analysis of model parameters

    图  13  羊圈河库区地下水渗流场分布: (a)天然条件; (b)蓄水条件

    Figure  13.  Seepage field of the reservoir area in the Yangquan River: (a) natural condition and (b) impounding condition

    表  1  羊圈河流域岩溶类型基本特征

    Table  1.   Basic characteristics of karst in the Yangquan River basin

    岩溶类型 位置 构造部位 分布地层 发育高程/m 形态特征
    溶洞 左右岸坡谷;冲沟沟坡和沟头 明堂向斜北西翼和南
    东翼;X1向斜近核部
    T1d3,T1j2
    T1j3
    900~977(占比18.6%)
    977~1440(占比81.4%)
    多顺层发育,发育方向N60°E~N80°E,洞径2~30 m,深度多大于3 m,少数发育岩溶泉。
    落水洞 左岸岭脊;右岸谷坡;冲沟沟口
    和沟头
    明堂向斜北西翼;
    B1背斜核部
    T1j2 1000~1300(占比4.5%)
    1300~1500(占比95.5%)
    沿北东向纵张和北西向横张陡倾节理发育,洞径0.5~5 m,探深3~200 m。
    岩溶泉 左右岸谷坡;冲沟沟头和沟口;河道转弯处 明堂向斜北西翼;
    B1背斜核部和南东翼;
    X1向斜近核部
    T1d3,T1j2 910~977(占比18.5%)
    977~1650(占比81.5%)
    大多数为岩溶泉,少量为岩溶裂隙水,流量0.1~30 L∙s−1,呈常流状态,受枯季影响小,正常蓄水位以下岩溶泉5个(S21、S23、S29、S30、S82)。
    地下暗河 上游谷底河源 明堂向斜核部 T1j2 1100 沿北东向主控褶皱构造方向发育,最大流量可达130 L∙s−1,露头于地层
    交界处。
    下载: 导出CSV

    表  2  地下水示踪试验安排表

    Table  2.   List of groundwater tracing tests

    试验
    编号
    投放点 具体
    位置
    投放试剂
    量/kg
    投放
    时间
    接收到
    时间
    时间间
    隔/min
    直线距
    离/m
    接收点
    1 K519 左岸平洞PD01 5.0 2022.10.07/17:50:00 2022.10.08/12:00:00 1100 350 岩溶泉S21
    2 K519 左岸平洞PD13 6.0 2022.07.26/11:00:00 2022.07.27/5:00:00 1080 270 岩溶泉S21
    3 ZK115 左岸坝肩 5.0 2022.09.26/12:00:00 2022.09.27/12:30:00 1470 250 岩溶泉S21
    4 ZK123 左岸坝肩 5.0 2022.09.29/11:40:00 2022.09.29/17:00:00 320 300 岩溶泉S21
    5 ZK103 左岸坝肩 4.0 2022.07.29/14:00:00 2022.07.30/9:00:00 1140 340 岩溶泉S21
    6 ZK118 右岸坝肩 5.0 2022.09.26/11:40:00 2022.09.29/10:00:00 4220 180 出露点PA和PB
    7 ZK124 右岸坝肩 5.0 2022.10.11/11:00:00 2022.10.16/7:50:00 7010 280 出露点PA和PB
    8 K401 右岸平洞PD17 20.0 2022.10.15/8:30:00 2022.11.01/14:00:00 24810 400 出露点PA和PB
    9 K505 右岸平洞PD02 5.0 2021.05.15/12:00:00 2021.06.16/8:00:00 1200 200 出露点PC
    下载: 导出CSV

    表  3  数值模型各渗透性分区参数取值表

    Table  3.   Parameter sections for five permeability zones of numerical model

    模型分层 层厚 (m) 左岸 右岸 坝基
    Kxx = Kyy/m∙d−1 Kzz/m∙d−1 给水度 Kxx = Kyy/m∙d−1 Kzz/m∙d−1 给水度 Kxx = Kyy/m∙d−1 Kzz/m∙d−1 给水度
    强渗透性层 8.0~236.5 5.13 0.513 0.3 1.58 0.158 0.1 0.02 0.002 0.01
    中等渗透性层 1.0~56.6 0.2 0.02 0.05 0.1 0.01 0.03 0.015 0.0015 0.01
    低渗透性层 0.5~136.0 0.017 0.0017 0.005 0.009 0.0009 0.002 0.01 0.001 0.001
    微渗透性层 64.2~317.7 0.001 0.0001 0.0001 0.001 0.0001 0.0001 0.001 0.0001 0.0001
    岩溶管道区 1.0~168.0 2141.0 214.1 0.3 42.82 4.28 0.3 / / /
    下载: 导出CSV

    表  4  羊圈河流域各月份平均降雨量和平均蒸发量统计表

    Table  4.   Statistics of monthly average rainfall and evaporation in the Yangquan River basin

    气象要素单位月份
    123456789101112
    平均降雨量mm16.423.254.298.6161.9166.3183.9136146.8105.652.217.81163.1
    平均蒸发量mm44.656.482.5111.9135.4146.7182.1192.713884.155.238.21267.8
    下载: 导出CSV

    表  5  蓄水期下水库渗漏量解析公式参数选取

    Table  5.   Parameter sections of analytical formulas for the lower reservoir leakage during impoundment

    部位K/m∙d−1)H/mB/mT/mL/mH2/mH1/mD/mr0/mV/m·s−1·m−1S/m2ΔH/m
    坝基0.028233810.5175///87.5///
    左岸坝肩5.13///17591.29.6225.1287.50.0054.067
    右岸坝肩1.58///175112.830.8252.0587.50.0010.385
    下载: 导出CSV

    表  6  不同计算方法下羊圈河下水库渗漏量计算表

    Table  6.   The lower reservoir leakage in the Yangquan River calculated by various methods

    渗漏部位 渗漏类型 解析解(m3/d) 数值解/m3∙d−1
    公式(2) 公式(3) 公式(4) 合计
    坝基 溶隙型渗漏 31.38 / / 31.38 53.45
    左岸坝肩 绕坝溶隙型渗漏 / 6338.16 / 122114.16 8480.25
    管道型渗漏 / / 115776
    右岸坝肩 绕坝溶隙型渗漏 / 3135.59 / 5338.79 3650.90
    管道型渗漏 / / 2203.2
    下载: 导出CSV
  • [1] 石朋, 侯爰冰, 马欣欣, 陈喜, 张志才. 西南喀斯特流域水循环研究进展[J]. 水利水电科技进展, 2012, 32(1):69-73. doi: 10.3880/j.issn.1006-7647.2012.01.016

    SHI Peng, HOU Yuanbing, MA Xinxin, CHEN Xi, ZHANG Zhicai. Research progress in hydrologic cycle in karst area of Southwest China[J]. Advances in Science and Technology of Water Resources, 2012, 32(1): 69-73. doi: 10.3880/j.issn.1006-7647.2012.01.016
    [2] 胡大儒, 郑克勋, 赵代尧, 陈占恒. 复杂岩溶水系统势汇区建坝成库可行性研究-以北盘江流域普岔河水库为例[J]. 中国岩溶, 2022, 41(5):736-745. doi: 10.11932/karst20220507

    HU Daru, ZHENG Kexun, ZHAO Daiyao, CHEN Zhanheng. Feasibility study on dam and reservoir construction in the catchment area of complex karst water system: Taking Pucha Reservoir of Beipan River as an example[J]. Carsologica Sinica, 2022, 41(5): 736-745. doi: 10.11932/karst20220507
    [3] 乔依娜. 重庆岩溶区近700年土壤侵蚀演变的洼地沉积记录[D]. 重庆: 西南大学, 2024.

    QIAO Yina. Sedimentary records of erosion evolution inkarst area of Chongqing in the past 700 years[D]. Chongqing: Southwest University, 2024.
    [4] 陈洪凯, 王圣娟, 粟俊江, 胡婷. 地下水降落诱发岩溶洞穴土质盖层塌陷的机制研究—以重庆歌乐山余家湾水库地面塌陷为例[J]. 重庆师范大学学报(自然科学版), 2018, 35(4):54-58.

    CHEN Hongkai, WANG Shengjuan, SU Junjiang, HU Ting. Study on mechanism of ground collapse in soil cover over karst caves triggered by drop-down of underground water: taking ground collapse at Yujiawan Reservior in Mt. Gele of Chongqing City as an example[J]. Journal of Chongqing Normal University (Natural Science), 2018, 35(4): 54-58.
    [5] 李云. 重庆南山隧道与上覆涂山湖相互影响研究[D]. 重庆: 重庆交通大学, 2015.

    LI Yun. Study on the mutual influence for Chongqing Nanshan tunnel and overlying TuShan lake[D]. Chongqing: Chongqing Jiaotong University, 2015.
    [6] 罗鉴银, 傅瓦利. 岩溶地区开挖隧道对水资源的影响—以渝合高速公路隧道为例[J]. 西南农业大学学报(自然科学版), 2006(1):154-156+160.

    LUO Jianyin, FU Wali. Effects of tunnel excavation in the Zhongliang Mountains on their water resources-a case study of the tunnel of Yuhe Highway[J]. Journal of Southwest Agricultural University (Natural Science), 2006(1): 154-156+160.
    [7] 李近, 曹聪, 许模, 范泽英, 夏强. 重庆中梁山隧道群涌突水时空特征分析[J]. 人民长江, 2023, 54(9):119-127+135.

    LI Jin, CAO Cong, XU Mo, FAN Zeying, XIA Qiang. Spatio-temporal characteristics of groundwater inrush in Zhongliang tunnel group in Chongqing City[J]. Yangtze River, 2023, 54(9): 119-127+135.
    [8] 李潇, 漆继红, 许模. 西南典型紧窄褶皱小尺度浅层岩溶水系统特征及隧道涌水分析[J]. 中国岩溶, 2020, 39(3):375-383. doi: 10.11932/karst2020y32

    LI Xiao, QI Jihong, XU Mo. Analysis on the characteristics of small-scale shallow karst water systems intypical tight-narrow folds and tunnel water inrush in southwestern China[J]. Carsological Sinica, 2020, 39(3): 375-383. doi: 10.11932/karst2020y32
    [9] 周正, 李大华, 廖云平, 林军志, 张烨, 陈洪凯, 祁永爱, 王贺. 重庆中梁山岩溶地面塌陷特征及形成机理[J]. 中国岩溶, 2022, 41(1):67-78. doi: 10.11932/karst20220103

    ZHOU Zheng, LI Dahua, LIAO Yunping, ZHANG Hua, CHEN Hongkai, QI Yongai, WANG He. Characteristics and formation mechanism of karst ground collapse in Zhongliangshan area, Chongqing[J]. Carsological Sinica, 2022, 41(1): 67-78. doi: 10.11932/karst20220103
    [10] 吴远斌, 殷仁朝, 雷明堂, 戴建玲, 贾龙, 潘宗源, 马骁, 周富彪. 重庆中梁山地区隧道工程影响下岩溶塌陷形成演化模式及防治对策[J]. 中国岩溶, 2021, 40(2):246-252. doi: 10.11932/karst20210204

    WU Yuanbin, YIN Renchao, LEI Mingtang, DAI Jianling, JIA Long, PAN Zongyuan, MA Xiao, ZHOU Fubiao. Triggering factors and prevention-control countermeasures of karst collapsescaused by tunnel construction in the Zhongliangshan area, Chongqing[J]. Carsological Sinica, 2021, 40(2): 246-252. doi: 10.11932/karst20210204
    [11] 胡婷. 重庆地区地下工程建设诱发岩溶塌陷的机制研究[D]. 重庆: 重庆交通大学, 2014.

    HU Ting. Study on the mechanism of karst collapse induced by underground engineering construction in Chongqing[D]. Chongqing: Chongqing Jiaotong University, 2014.
    [12] 沈春勇, 余波, 郭维祥. 水利水电工程岩溶勘察与处理[M]. 北京: 中国水利水电出版社, 2015.

    SHEN Chunyong, YU Bo, GUO Weixiang. Karst survey and treatment of water conservancy and hydropower engineering[M]. Beijing: China Water & Power Press, 2015.
    [13] 韩行瑞. 岩溶水文地质学[M]. 北京: 地质出版社, 2015.

    HAN Xingrui. Karst Hydrogeology[M]. Beijing: Geological Publishing House, 2015.
    [14] 曾荣福, 郑克勋, 王钦权. 岩溶水库渗透破坏型渗漏勘察与评价[J]. 中国岩溶, 2023, 42(1):119-127. doi: 10.11932/karst2021y29

    ZENG Rongfu, ZHENG Kexun, WANG Qinquan. Investigate and evaluation of the leakage caused by seepage failure in karst reservoir[J]. Carsologica Sinica, 2023, 42(1): 119-127. doi: 10.11932/karst2021y29
    [15] 刘天云, 罗锐恒, 胡顺强, 赵永宾, 潘晓东, 刘伟. 文山小河尾水库岩溶渗漏水文地质条件与管道位置识别[J]. 中国岩溶, 2022, 41(1):88-99. doi: 10.11932/karst20220104

    LIU Tianyun, LUO Ruiheng, HU Shunqiang, ZHAO Yongbin, PAN Xiaodong, LIU Wei. Hydrogeological conditions of karst leakage and identification of pipeline location in Xiaohewei reservoir, Wenshan[J]. Carsologica Sinica, 2022, 41(1): 88-99. doi: 10.11932/karst20220104
    [16] 段乔文, 俞富有, 张天柏, 何伟, 段春林. 滇东高原罗平湾子水库岩溶渗漏机理及库外补漏设想[J]. 中国岩溶, 2022, 41(2):287-297. doi: 10.11932/karst20220209

    DUAN Qiaowen, YU Fuyou, ZHANG Tianbai, HE Wei, DUAN Chunlin. Karst leakage and its sealing at Wanzi reservoir in Luoping county on the plateau of eastern Yunnan[J]. Carsologica Sinica, 2022, 41(2): 287-297. doi: 10.11932/karst20220209
    [17] Chen Y, Yuan J, Wang G, Xu J, Hu R, Yang Z. Evaluation of groundwater flow through a high rockfill dam foundation in karst area in response to reservoir impoundment[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 160: 105268. doi: 10.1016/j.ijrmms.2022.105268
    [18] VASIC L, Milanovic S, Puskas-Preszner A, Palcsu L. Determination of the groundwater-leakage mechanism (binary mixing) in a karstic dam site using thermometry and isotope approach (HPP Visegrad, Bosnia, and Herzegovina)[J]. Environmental Earth Sciences, 2020, 79: 174. doi: 10.1007/s12665-020-08910-x
    [19] Gutierrez F, Mozafari M, Carbonel D, Gomez R, Raeisi E. Leakage problems in dams built on evaporites. The case of La Loteta Dam (NE Spain), a reservoir in a large karstic depression generated by interstratal salt dissolution[J]. Engineering Geology, 2015, 185: 139-154. doi: 10.1016/j.enggeo.2014.12.009
    [20] 吴广平, 杨良权, 汪德云, 刘殿柱, 刘爱友. 天开水库渗漏计算及防渗研究[J]. 水利水电技术, 2019, 50(S1):245-249.

    WU Guangping, YANG Liangquan, WANG Deyun, LIU Dianzhu, LIU Aiyou. Study on leakage calculation and seepage prevention of Tainkai reservoir[J]. Water Resources and Hydropower Engineering, 2019, 50(S1): 245-249.
    [21] 王晓晓, 夏强, 曹聪, 许模, 陈明浩. 岩溶区库水渗漏涌入隧道的水动力过程模拟分析[J]. 水利水电技术(中英文), 2024, 55(4):101-111.

    WANG Xiaoxiao, XIA Qiang, CAO Cong, XU Mo, CHEN Minghao. Numerical simulation analysis of the hydrodynamic process of reservoir water leakage into a tunnel in karst area[J]. Water Resources and Hydropower Engineering, 2024, 55(4): 101-111.
    [22] Feng S, Zhao Y, Wang Y, Wang S, Cao R. A comprehensive approach to karst identification and groutability evaluation-A case study of the Dehou reservoir, SW China[J]. Engineering Geology, 2020, 269: 105529. doi: 10.1016/j.enggeo.2020.105529
    [23] Mozafari M, Van Brahana J, Eskandari R, Pazoki M. Karst leakage analysis of Roudbal Dam, southwestern Iran, using geological, hydrogeological, hydrochemical and stable-isotopic approaches[J]. Bulletin of Engineering Geology and The Environment, 2024, 83(11): 466. doi: 10.1007/s10064-024-03960-y
    [24] Cen X, Xu M, Qi J, Zhang Q, Shi H. Characterization of karst conduits by tracer tests for an artificial recharge scheme[J]. Hydrogeology Journal, 2021, 29(7): 2381-2396. doi: 10.1007/s10040-021-02398-w
    [25] Liu B, Wang C, Liu Z, Xu Z, Nie L, Pang Y, Wang N, Feng S. Cascade surface and borehole geophysical investigation for water leakage: A case study of the Dehou reservoir, China[J]. Engineering Geology, 2021, 294: 106364. doi: 10.1016/j.enggeo.2021.106364
    [26] Zhang W, Shen Z, Chen G, Zhang W, Xu L, Ren J, Wang F. Optimization design and assessment of the effect of seepage control at reservoir sites under karst conditions: a case study in Anhui Province, China[J]. Hydrogeology Journal, 2021, 29(5): 1831-1855. doi: 10.1007/s10040-021-02357-5
    [27] Mozafari M, Raeisi E. Potential leakage paths at the dams constructed on karst terrains in Iran[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2022, 55(2): qjegh2021-102.
    [28] Ashjari J, Soltani F, Rezai M. Prediction of groundwater seepage caused by unclogging of fractures and grout curtain dimensions changes via numerical double-porosity model in the Karun IV River Basin (Iran)[J]. Environmental Earth Sciences, 2019, 78: 1-17. doi: 10.1007/s12665-018-7995-0
    [29] Chen Y, Wang S, REN W, Yang Z, Hu R, Mao Y. Detection of leakage in the plunge pool area at Xiluodu arch dam with an integrated approach[J]. Journal of Hydrology, 2023, 618: 129135. doi: 10.1016/j.jhydrol.2023.129135
    [30] 刘芮彤, 王锦国, 周云, 黄华, 陈长生. 云南鹤庆西山岩溶地下水均衡模拟[J]. 中国岩溶, 2019, 38(4):532-538. doi: 10.11932/karst20190409

    LIU Ruitong, WANG Jinguo, ZHOU Yun, HUANG Hua, CHEN Changsheng. Simulation of karst groundwater balance in the Westshan mountains, Heqing county, Yunnan Province[J]. Carsologica Sinica, 2019, 38(4): 532-538. doi: 10.11932/karst20190409
    [31] 赵一, 邹胜章, 申豪勇, 周长松, 樊连杰, 朱丹尼, 李军. 会仙湿地岩溶地下水系统水位动态特征与均衡分析[J]. 中国岩溶, 2021, 40(2):325-333. doi: 10.11932/karst2021y19

    ZHAO Yi, ZOU Shengzhang, SHEN Haoyong, ZHOU Changsong, FAN Lianjie, ZHU Danni, LI Jun. Dynamic characteristics and equilibrium of water level of the karst groundwater system beneath the Huixian wetland[J]. Carsologica Sinica, 2021, 40(2): 325-333. doi: 10.11932/karst2021y19
    [32] 任世川, 杨晓艳, 杨颖彬, 刘海峰, 杨帆. 丽江黑龙潭地下河系统的水均衡分析与预测评价[J]. 中国岩溶, 2023, 42(6):1183-1192. doi: 10.11932/karst20230604

    REN Shichuan, YANG Xiaoyan, YANG Yingbing, LIU Haifeng, YANG Fan. Equilibrium analysis and prediction evaluation of the Heilongtan groundwater system in Lijiang of northwestern Yunnan Province[J]. Carsologica Sinica, 2023, 42(6): 1183-1192. doi: 10.11932/karst20230604
    [33] 田娟, 董贵明, 束龙仓. 孔隙-管道型西南岩溶地下河系统参 数与流量衰减系数关系的数值试验研究[J]. 水文地质工程地质, 2013, 40(2):13-18.

    TIAN Juan, DONG Guiming, SU Longcang. Research on relationship between parameters and attenuation coefficients of pore-pipe underground river systems, Southwest China[J]. Hydrogeology & Engineering Geology, 2013, 40(2): 13-18.
    [34] 陈崇希. 岩溶管道-裂隙-孔隙三重空隙介质地下水流模型及模拟方法研究[J]. 地球科学, 1995(4):361-366.

    CHEN Chongxi. Groundwater flow model and simulation method in triple media of karstic tube-fissure-fore[J]. Earth Science, 1995(4): 361-366.
    [35] 赵坚, 赖苗, 沈振中. 适于岩溶地区渗流场计算的改进折算渗透系数法和变渗透系数法[J]. 岩石力学与工程学报, 2005, 24(8):1341-1347. doi: 10.3321/j.issn:1000-6915.2005.08.011

    ZHAO Jian, LAI Miao, SHEN Zhenzhong. Improved converting permeability coefficient method and variable permeability coefficient method for seepage calculation in karst region[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1341-1347. doi: 10.3321/j.issn:1000-6915.2005.08.011
    [36] 交通部第一铁路设计院. 铁路工程地质手册[M]. 北京: 人民交通出版社, 1975.

    The First Railway Design Institute of the Ministry of Transport. Railway engineering geological manual[M]. Beijing: China Communication Press, 1975.
    [37] 李兆, 骆祖江, 杨璐, 胡颖. 浅层地热能不同开发方案对深层地下淡水咸化效应研究[J]. 水利学报, 2022, 53(5):621-630.

    LI Zhao, LUO Zujiang, YANG Lu, HU Ying. Effect of different development schemes of shallow geothermal energy on salinization of deep fresh groundwater[J]. SHUILI XUEBAO, 2022, 53(5): 621-630.
    [38] 抽水蓄能电站工程地质勘察规程(NB/T10073-2018)[S]. 北京: 中国水利水电出版社, 2018.

    Specification for engineering geological investigation of pumped storage power stations (NB/T10073-2018)[S]. Beijing: China Water & Power Press, 2018.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  8
  • HTML浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-16
  • 录用日期:  2025-07-29
  • 修回日期:  2025-07-08
  • 网络出版日期:  2025-08-22

目录

    /

    返回文章
    返回