• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自然与工程扰动叠加影响下的滇东南岩溶大泉水文过程

黄靖宇 李春宇 许模 魏啟杨

黄靖宇,李春宇,许 模,等. 自然与工程扰动叠加影响下的滇东南岩溶大泉水文过程[J]. 中国岩溶,2025,44(6):1134-1143 doi: 10.11932/karst20250601
引用本文: 黄靖宇,李春宇,许 模,等. 自然与工程扰动叠加影响下的滇东南岩溶大泉水文过程[J]. 中国岩溶,2025,44(6):1134-1143 doi: 10.11932/karst20250601
HUANG Jingyu, LI Chunyu, XU Mo, WEI Qiyang. Hydrogeological processes of large karst spring in southeastern Yunnan affected by the combined influence of natural and engineering disturbances[J]. CARSOLOGICA SINICA, 2025, 44(6): 1134-1143. doi: 10.11932/karst20250601
Citation: HUANG Jingyu, LI Chunyu, XU Mo, WEI Qiyang. Hydrogeological processes of large karst spring in southeastern Yunnan affected by the combined influence of natural and engineering disturbances[J]. CARSOLOGICA SINICA, 2025, 44(6): 1134-1143. doi: 10.11932/karst20250601

自然与工程扰动叠加影响下的滇东南岩溶大泉水文过程

doi: 10.11932/karst20250601
基金项目: 国家自然科学基金(42272318)
详细信息
    作者简介:

    黄靖宇(1997-),男,在读博士研究生,主要从事岩溶水文地质学研究。E-mail:837408180@qq.com

    通讯作者:

    许模(1963-),男,教授,博士研究生导师,主要从事环境工程地质、工程水文地质研究工作。E-mail:xm@cdut.edu.cn

  • 中图分类号: P641.134

Hydrogeological processes of large karst spring in southeastern Yunnan affected by the combined influence of natural and engineering disturbances

  • 摘要: 为探究降水变化和工程扰动叠加影响下的南方岩溶大泉流量动态变化过程和响应特征,以滇东南地区小路南岩溶大泉为例,基于区域水化学和同位素的测试结果,查明了大泉的成因性质、补给来源及其与隧洞工程的水力联系,并对大泉流量、泉域降水量和隧洞钻孔水位的同频监测数据进行了变化趋势和相关性的分析,构建了泉域多级水流系统结构的概念模型。结果表明:小路南岩溶大泉是跨流域补给的断层上升泉;在降水变化和工程扰动影响下的两个水文年中,大泉流量较稳定,时序曲线呈现不对称尖峰型和波状起伏型两种形态,含水层自循环周期约2个月,泉流量与降水量的相关性较弱,在部分时段泉流量对降水存在1~2个月的响应滞后时间。区域水流系统的自身属性与局部水流系统的协同作用是维持大泉水量稳定和降低大泉对降水响应灵敏度的关键因素,隧洞施工在泉域中形成的中间水流系统对含水层的水量袭夺和水压力释放是大泉后期减流的重要原因。

     

  • 图  1  研究区水文地质图 (a)区域位置图(b)水文地质图(c)地质剖面图

    Figure  1.  Hydrogeological map of the study area: (a) regional location map; (b) hydrogeological map; (c) geological profile

    图  2  小路南龙潭与不同水体δD-δ18O关系图

    GMWL全球大气降水线(Global Atmospheric precipitation line):δD=8δ18O+10;

    Figure  2.  Relationship diagram of δD-δ18O in the Xiaolunan spring and different water bodies

    图  3  小路南龙潭水化学演变与隧洞涌水Schoeller图

    Figure  3.  Schoeller diagram of hydrochemical evolution of the Xiaolunan spring and water inflow from tunnels

    图  4  降水、泉流量与钻孔水位动态变化特征

    Figure  4.  Dynamic characteristics of precipitation, spring discharge rates, and borehole water levels

    图  5  降水、泉流量与钻孔水位自相关函数曲线

    Figure  5.  Autocorrelation function curves for precipitation, spring discharge rates, and borehole water levels

    图  6  水文要素互相关分析(a)降水量与泉流量(b)降水量和钻孔水位

    Figure  6.  Correlation analysis of hydrological elements: (a) between precipitation and spring discharge rates; (b) between precipitation and borehole water levels

    图  7  研究区多级水流系统与水循环概念模型:(a)天然状态(b)隧洞施工排水状态

    Figure  7.  Hierarchical groundwater flow system and conceptual model of water cycle in the study area: (a) natural condition; (b) drainage condition of tunnel construction

  • [1] FORD D, WILLIAMS P. Karst hydrogeology and geomorphology[M]. Hoboken: John Wiley & Sons Ltd, 2007: 441-442.
    [2] 郭纯青. 中国岩溶生态水文学[M]. 北京: 地质出版社, 2007: 124-128.

    GUO Chunqing. Chinese karst ecohydrology[M]. Beijing: Geological Publishing House, 2007: 124-128.
    [3] 袁道先, 蒋勇军, 沈立成, 蒲俊兵, 肖琼. 现代岩溶学[M]. 北京: 科学出版社, 2016: 292-294.

    YUAN Daoxian. , JIANG Yongjun, SHEN Licheng, PU Junbing, XIAO Qiong. Modern karstology[M]. Beijing: Science Publishing House, 2016: 292-294.
    [4] LI Z W, XU X L, LIU M X, LI X Z, ZHANG R F, WANG K L, XU C H. State-space prediction of spring discharge in a karst catchment in Southwest China[J]. Journal of Hydrology, 2017, 549: 264-276. doi: 10.1016/j.jhydrol.2017.04.001
    [5] KANSOU K, BREDEWEG B. Hypothesis assessment with qualitative reasoning: Modelling the fontestorbes fountain[J]. Ecological Informatics, 2014, 19: 71-89. doi: 10.1016/j.ecoinf.2013.10.007
    [6] NERANTZAKI S D, NIKOLAIDIS N P. The response of three mediterranean karst springs to drought and the impact of climate change[J]. Journal of Hydrology, 2020, 591: 125296. doi: 10.1016/j.jhydrol.2020.125296
    [7] 梁永平, 申豪勇, 赵春红, 唐春雷, 王志恒, 赵一, 谢浩. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3): 363-380.

    LIANG Yongping, SHEN Haoyong, ZHAO Chunhong, TANG Chunlei, WANG Zhiheng, ZHAO Yi, XIE Hao. Thinking and practice on the research direction of karst water in Northern China[J]. Carsologica Sinica, 2021, 40(3): 363-380.
    [8] 夏日元, 卢海平, 曹建文, 赵良杰, 王喆, 栾崧. 南方岩溶区地下水资源特征与水资源保障对策[J]. 中国地质, 2022, 49(4): 1139-1153.

    XIA Riyuan, LU Haiping, CAO Jianwen, ZHAO Liangjie, WANG Ji, LUAN Song. Characteristics of groundwater resources of karst areas in the Southern China and water resources guarantee countermeasures[J]. Geology in China, 2022, 49(4): 1139-1153.
    [9] 王焰新. 我国北方岩溶泉域生态修复策略研究: 以晋祠泉为例[J]. 中国岩溶, 2022, 41(3): 331-344.

    WANG Yanxin. Study on ecological restoration strategy of karst spring region in North China: taking Jinci spring as an example[J]. Carsologica Sinica, 2022, 41(3): 331-344.
    [10] 梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 地质科技通报, 2022, 41(5): 199-219

    LIANG Yongping, SHEN Haoyong, GAO Xubo. Review of research progress of karst groundwater in Northern China[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 199-219.
    [11] 郭绪磊, 陈乾龙, 黄琨, 周宏. 宜昌潮水洞岩溶间歇泉动态特征及成因[J]. 地球科学, 2020, 45(12): 4524-4534.

    GUO Xulei, CHEN Qianlong, HUANG Kun, ZHOU Hong. Dynamic features and causes of Chaoshuidong siphonal spring[J]. Earth Science, 2020, 45(12): 4524-4534.
    [12] 岑鑫雨, 钟金先, 邓国仕, 许模. 基于迟滞排泄水箱模型模拟岩溶断流泉水文过程[J]. 中国岩溶, 2023, 42(4): 711-721.

    CEN Xinyu, ZHONG Jinxian, DENG Guoshi, XU Mo. Modelling the hydrological process of the dried-up karst spring based on a reservoir model for hysteretic discharge[J]. Carsologica Sinica, 2023, 42(4): 711-721.
    [13] 孟庆晗, 邢立亭, 彭凯, 朱文峰, 刘连, 何强, 徐冰, 潘潍艳, 宋其峰. 基于氚同位素的济南泉域地下水更新能力研究[J]. 中国岩溶, 2025, 44(1): 38-47.

    MENG Qinghan, XING Liting, PENG Kai, ZHU Wenfeng, LIU Lian, HE Qiang, XU Bing, PAN Weiyan, SONG Qifeng. Researchon groundwater renewal capacity in Jinan spring area based on tritium isotopes[J]. Carsologica Sinica, 2025, 44(1): 38-47.
    [14] 张春潮, 侯新伟, 李向全, 王振兴, 桂春雷, 左雪峰. 三姑泉域岩溶地下水水化学特征及形成演化机制[J]. 水文地质工程地质, 2021, 48(3): 62-71.

    ZHANG Chunchao, HOU Xinwei, LI Xiangquan, WANG Zhenxing, GUI Chunlei, ZUO Xuefeng. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu spring[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 62-71.
    [15] 梁永平, 张发旺, 申豪勇, 唐春雷, 赵春红, 王志恒, 侯宏冰, 任建会, 郭芳芳. 山西太原晋祠–兰村泉水复流的岩溶水文地质条件新认识[J]. 水文地质工程地质, 2019, 46(1): 11-18, 34.

    LIANG Yongping, ZHANG Fawang, SHEN Haoyong, TANG Chunlei, ZHAO Chunhong, WANG Zhiheng, HOU Hongbin, REN Jianhui, GUO Fangfang. Recognition of the critical hydrogeological conditions of the Jinci spring and Lancun spring in Shanxi[J] Hydrogeology & Engineering Geology, 2019, 46(1): 11-18, 34.
    [16] 张士俊, 李瑞丽, 武鹏林. 基于ArcGIS的辛安泉地下水水质评价研究[J]. 长江科学院院报, 2013, 30(5): 9-12.

    ZHANG Shijun, LI Runli, WU Penglin. ArcGIS-Based assessment of groundwater quality of Xin'an karst spring[J]. Journal of Changjiang River Scientific Research Institute, 2013, 30(5): 9-12.
    [17] 陈荦, 张幼宽, 王长申. 基于时间序列分析的辛安泉流量变化研究[J]. 水文地质工程地质, 2012, 39(1): 19-23, 41.

    CHEN Luo, ZHANG Youkuan, WANG Changsheng. A study of evolution of the discharge of the Xin'an spring with time series analysis[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 19-23, 41.
    [18] 孟庆晗, 王鑫, 邢立亭, 董亚楠, 朱恒华, 武朝军, 李传磊, 于苗, 侯玉松. 济南四大泉群补给来源差异性研究[J]. 水文地质工程地质, 2020, 47(1): 37-45.

    MENG Qinghan, WANG Xin, XING Liting, DONG Yanan, ZHU Henghua, WU Zhaojun, LI Chuanlei, YU Miao, HOU Yusong. A study of the difference in supply sources of the four groups of springs in Jinan[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 37-45.
    [19] ZHU H H, XING L T, MENG Q H, XING X R, PENG Y M, LI C S, LI H, YANG L Z. Water recharge of Jinan karst springs, Shandong, China[J]. Water, 2020, 12(3): 694. doi: 10.3390/w12030694
    [20] 卢海平, 张发旺, 赵春红, 夏日元, 梁永平, 陈宏峰. 我国南北方岩溶差异[J]. 中国矿业, 2018, 27(S2): 317-319.

    LU Haiping, ZHANG Fawang, ZHAO Chunhong, XIA Riyuan, LIANG Bin, CHEN Hongfeng. Differences between southern karst and northern karst besides scientific issues that need attention[J]. China Mining Magazine, 2018, 27(S2): 317-319.
    [21] LV Y X, JIANG Y J, HU W, CAO M, MAO Y. A review of the effects of tunnel excavation on the hydrology, ecology, and environment in karst areas: current status, challenges, and perspectives[J]. Journal of Hydrology, 2020, 586: 124891. doi: 10.1016/j.jhydrol.2020.124891
    [22] 袁道先. 西南岩溶石山地区重大环境地质问题及对策研究[M]. 北京: 科学出版社, 2014: 160-176.

    YUAN Daoxian. Study on major environmental geological problems and countermeasures in karst rocky mountain area of Southwest China[M]. Beijing: Science Press, 2014: 160-176.
    [23] 王宇, 何绕生, 刘海峰, 王梓溦, 晏祥省, 双灵, 彭淑惠. 昆明翠湖九龙池泉群断流原因及恢复措施[J]. 中国岩溶, 2014, 33(3): 263-271.

    WANG Yu, HE Raosheng, LIU Haifeng, WANG Ziwei, YAN Xiangsheng, SHUANG Ling, PENG Shuhui. Drought causes and restoration measures for Jiulongchi spring group within Cuihu lake, Kunming[J]. Carsologica Sinica, 2014, 33(3): 263-271.
    [24] 王宇, 张贵, 张华. 云南省岩溶水文地质环境地质调查与研究[M]. 北京: 地质出版社, 2018: 159-176.

    WANG Yu, ZHANG Gui, ZHANG Hua. Investigation and study of karst hydrogeology and environmental geology in Yunnan Province[M]. Beijing: Geological Publishing House, 2018: 159-176.
    [25] 黄靖宇, 许模, 许汉华, 刘文连, 杨艳娜, 唐一格, 肖先煊. 滇中高原岩溶关键带典型含水系统水化学特征及成因分析[J]. 地质科技通报, 2022, 41(5): 347-356.

    HUANG Jingyu, XU Mo, XU Hanhua, LIU Wenlian, YANG Yanna, TANG Yige, XIAO Xianxuan. Hydrochemical characteristics and genesis analysis of typical aquifer system in karst critical zone of central Yunnan platea[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 347-356.
    [26] 李建鸿, 蒲俊兵, 张陶, 王赛男. 相关和频谱分析法在岩溶系统中的应用研究综述[J]. 中国岩溶, 2020, 39(3): 335-344.

    LI Jianhong, PU Junbing, ZHANG Tao, WANG Sainan. Review on application of correlation and spectrum analyses in karst system[J]. Carsologica Sinica, 2020, 39(3): 335-344.
    [27] TÓTH J. A theoretical analysis of groundwater flow in small drainage basin[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795
  • 加载中
图(7)
计量
  • 文章访问数:  11
  • HTML浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-26
  • 录用日期:  2025-06-25
  • 修回日期:  2025-06-03
  • 刊出日期:  2025-12-25

目录

    /

    返回文章
    返回