• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石膏岩钻孔原位溶蚀试验研究

周建伟 何潇 高晓峰 彭涛 许可 赵勇

周建伟,何 潇,高晓峰,等. 石膏岩钻孔原位溶蚀试验研究[J]. 中国岩溶,2025,44(5):1025-1035, 1048 doi: 10.11932/karst20250508
引用本文: 周建伟,何 潇,高晓峰,等. 石膏岩钻孔原位溶蚀试验研究[J]. 中国岩溶,2025,44(5):1025-1035, 1048 doi: 10.11932/karst20250508
ZHOU Jianwei, HE Xiao, GAO Xiaofeng, PENG Tao, XU Ke, ZHAO Yong. Study on an in-situ dissolution experiment of gypsum boreholes[J]. CARSOLOGICA SINICA, 2025, 44(5): 1025-1035, 1048. doi: 10.11932/karst20250508
Citation: ZHOU Jianwei, HE Xiao, GAO Xiaofeng, PENG Tao, XU Ke, ZHAO Yong. Study on an in-situ dissolution experiment of gypsum boreholes[J]. CARSOLOGICA SINICA, 2025, 44(5): 1025-1035, 1048. doi: 10.11932/karst20250508

石膏岩钻孔原位溶蚀试验研究

doi: 10.11932/karst20250508
基金项目: 四川省科技计划自然科学基金项目( 2023NSFSC0787);企业研发课题( ZYCK2022-B001)
详细信息
    作者简介:

    周建伟(1984-),男,高级工程师,硕士,主要从事环境地质、特殊性岩土研究。E-mail:zjw_1228@sina.com

    通讯作者:

    何潇(1995-),男,高级工程师,博士,主要从事岩土工程研究。E-mail: 13683313520@163.com

  • 中图分类号: P642.25

Study on an in-situ dissolution experiment of gypsum boreholes

  • 摘要: 以往针对石膏岩溶蚀试验多局限于室内环境,难以全面反映深部石膏溶蚀的真实情况。钻孔原位溶蚀试验方法是在石膏岩场地的钻孔内不同深度放置石膏岩标准试件,模拟石膏岩在原位水动力、水化学、温度等环境下的动态溶蚀过程。目前,国内鲜有公开该方法的研究成果,本文以白垩系灌口组石膏岩为研究对象,通过试验首次获取该石膏岩原位溶蚀宏观形态、溶蚀速率、水化学变化特征,深度剖析原位环境下石膏岩的溶蚀主控因素和机理。研究结果表明:钻孔原位环境中,石膏岩溶蚀的宏观特征、溶蚀速率具有显著垂向分层效应,主要受水动力条件控制,水化学影响次之;钻孔内15 m和25 m深度处试件溶蚀速率高达0.25 mm·d−1(约90 mm·a−1),而35 m深度处试件溶蚀速率仅为上述位置的1/4;15 m和25 m处试件的溶蚀主要受水动力物理驱动作用,溶蚀过程经历吸附饱水、浅层凹坑、横向并坑、纵深解体的四个阶段;35 m处试件在近似于封闭地下水环境下,溶蚀速率缓慢,主要受控于化学溶解。通过本试验研究,构建了石膏岩钻孔原位溶蚀试验流程和评价方法,可为石膏岩场地岩溶风险评价提供重要的参考依据。

     

  • 图  1  场地区域地质图

    1-第四系 2-白垩系灌口组 3-白垩系 4-侏罗系 5-断层 6-隐伏断层 7-背斜 8-向斜 9-研究场地 褶皱:①龙泉山背斜 ②苏码头背斜 ③籍田铺—龙泉驿隐伏向斜 断层:(1)新津—双流—德阳隐伏断层 (2)龙泉驿断层 (3)苏码头背斜西翼断层 (4)府河隐伏断层 (5)白沙隐伏断层 (6)双桥子—包江桥隐伏断层 (7)毗河隐伏断层 (8)新都—磨盘山隐伏断层 (9)簇桥隐伏断层 (10)双流冒火山断层

    Figure  1.  Geological map of the study area

    图  2  场地典型岩芯照片

    A - 层状石膏 B - 团斑、层状石膏 C - 团斑状石膏 D-脉状石膏

    Figure  2.  Photos of typical cores of the study area

    图  3  石膏岩矿物成分谱图

    Figure  3.  Spectrogram of mineral compositions of gypsum

    图  4  钻孔原位溶蚀试验装置

    Figure  4.  Test device for borehole dissolution

    图  5  15 m处试件溶蚀宏观变化特征

    Figure  5.  Variation in specimen dissolution at 15 m

    图  6  25 m处试件溶蚀宏观变化特征

    Figure  6.  Variation in specimen dissolution at 25 m

    图  7  35 m处试件溶蚀宏观变化特征

    Figure  7.  Variation in specimen dissolution at 35 m

    图  8  石膏岩溶蚀平均质量变化曲线

    Figure  8.  Curve of average quality variation in dissolution of gypsum

    图  9  试验前不同深度地下水的化学特征

    Figure  9.  Chemical characteristics of groundwater at different depths before the test

    图  10  15 m、25 m处石膏岩溶蚀机理概念模型

    Figure  10.  Schematic diagram of the dissolution mechanism of gypsum specimens at 15 m and 25 m

    图  11  35 m处石膏岩溶蚀机理概念模型

    Figure  11.  Schematic diagram of the dissolution mechanism of gypsum specimens at 35 m

    表  1  试件溶蚀平均质量变化统计表

    Table  1.   Statistics of average quality variation in specimen dissolution

    试验
    时间 t/d
    质量损失率 Mc/% 溶蚀速率Vd / ×10−2 g cm2·d−1
    15 m 25 m 35 m 15 m 25 m 35 m
    0 0.0 0.0 0.0
    3 9.3 9.3 2.2 1.78 1.74 0.44
    7 19.7 19.5 3.4 1.49 1.43 0.18
    15 44.9 43.8 8.5 1.76 1.70 0.40
    30 73.9 73.7 18.4 1.16 1.13 0.45
    下载: 导出CSV

    表  2  地下水化学特征统计表

    Table  2.   Statistics of groundwater chemistry

    取样
    深度/m
    pH ${\rm{SO}}_4^{2-}$ /mg·L−1 Ca2+/mg·L−1 总矿化度/mg·L−1 ${\rm{SO}}_4^{2-}$/Ca2+
    0 d 7 d 0 d 7 d 0 d 7 d 0 d 7 d
    10 7.48 296 73 693 4.1
    15 7.63 412 532 129 280 879 1098 3.2 1.9
    20 8.06 655 189 1152 3.5
    25 7.95 790 858 304 476 1450 1590 2.6 1.8
    30 7.81 536 196 1030 2.7
    35 7.32 374 428 112 306 809 1054 3.4 1.4
    下载: 导出CSV

    表  3  石膏岩溶蚀速率常数与径流速度统计表

    Table  3.   Statistics of dissolution rate constants and water velocity of gypsum

    试件
    环境
    dM×10−3
    /kg
    dt×105
    /s
    Cs-C
    /kg·m−3
    K×10−5/m·s−1
    15 m 6.22 6.048 1.67 0.114
    25 m 5.99 6.048 1.21 0.075
    35 m 1.02 6.048 1.81 0.030
    下载: 导出CSV
  • [1] Gutiérrez F, Ortí F, Gutiérrez M, Pérez-González A, Benito G, Prieto J G, Durán Valsero J J. The stratigraphical record and activity of evaporite dissolution subsidence in Spain[J]. Carbonates and Evaporites, 2001, 16(1): 46-70. doi: 10.1007/BF03176226
    [2] Cooper A H. Environmental problems caused by gypsum karst and salt karst in Great Britain[J]. Carbonates and Evaporites, 2002, 17(2): 116-120.
    [3] Farrant A R, Cooper A H. Karst geohazards in the UK: the use of digital data for hazard management[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2008, 41(3): 339-356. doi: 10.1144/1470-9236/07-201
    [4] Schwendel A C, Cooper A H. Meander chute cutoff at an alluvial river facilitated by gypsum sinkholes[J]. Geomorphology, 2021, 393(3): 107944.
    [5] Doğan U. Land subsidence and caprock dolines caused by subsurface gypsum dissolution and the effect of subsidence on the fluvial system in the Upper Tigris Basin (between Bismil-Batman, Turkey)[J]. Geomorphology, 2005, 71(3/4): 389-401.
    [6] Johnson K S. Subsidence hazards due to evaporite dissolution in the United States[J]. Environmental geology: International journal of geosciences, 2005, 48(3): 395-409. doi: 10.1007/s00254-005-1283-5
    [7] Johnson K S. Evaporite karst in the USA[J]. Environmental geology, 2008, 53: 937-943. doi: 10.1007/s00254-007-0716-8
    [8] 卢耀如, 张凤娥, 阎葆瑞, 郭秀红. 硫酸盐岩岩溶发育机理与有关地质环境效应[J]. 地球学报, 2002, 23(1): 1-6. doi: 10.3321/j.issn:1006-3021.2002.01.001

    LU Yaoru, ZHANG Fenge, YAN Baorui, GUO Xiuhong. Mechanism of karst development in sulphate rocks and its main Geo environmental Impacts[J]. Acta Geoscientica Sinica, 2002, 23(1): 1-6. doi: 10.3321/j.issn:1006-3021.2002.01.001
    [9] 王光亚, 施斌, 徐玉琳, 顾阿明. 南京石膏矿特大突水灾害机理研究[J]. 工程地质学报, 2008, 16(5): 651-656.

    Wang Guangya, Shi Bin, Xu Yulin, GU Aming. Case study and mechanism of water invasion hazard in Nanjing gypsum mine at deep depth[J]. Journal of Engineering Geology, 2008, 16(5): 651-656.
    [10] 张玲玲. 石膏原岩静水溶蚀时间-温度效应试验初步研究[J]. 中国岩溶, 2019, 38(2): 265-268. doi: 10.11932/karst20190211

    ZHANG Lingling. Preliminary experimental study on time-temperature effects of gypsum rock corrosion in static water[J]. Carsologica Sinica, 2019, 38(2): 265-268. doi: 10.11932/karst20190211
    [11] Pando L, Pulgar J A, Gutierrez-Claverol M. A case of man-induced ground subsidence and building settlement related to karstified gypsum (Oviedo, NW Spain)[J]. Environmental Earth Sciences, 2013, 68(2): 507-519. doi: 10.1007/s12665-012-1755-3
    [12] Laouafa F, Guo J, Quintard M. Modeling of salt and gypsum dissolution: applications, evaluation of geomechanical hazards[J]. European Journal of Environmental and Civil Engineering, 2019: 1-22.
    [13] 孟涛, 梁卫国, 陈跃都, 于永军. 层状盐岩溶腔建造过程中石膏夹层周期性垮塌理论分析[J]. 岩石力学与工程学报, 2015, Z1: 3267-3273.

    MENG Tao, LIANG Weiguo, CHEN Yuedu, YU Yongjun. Theoretical analysis of periodic fracture for gypsum interlayer during construction of bedded salt cavern[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, Z1: 3267-3273.
    [14] Zaier I, Billiotte J, De Windt L, Charmoille A . The impact of common impurities present in gypsum deposits on in situ dissolution kinetics[J]. Environ Earth Sci, 2023, 82, 31. DOI: https://doi.org/10.1007/s12665-022-10710-4.
    [15] Feng P, Brand A S, Chen L, Bullard J W. In situ nanoscale observations of gypsum dissolution by digital holographic microscopy[J]. Chemical geology, 2017, 46025-36. DOI: 10.1016/j.chemgeo.2017.04.008.
    [16] Meng T, Meng X, Zhang D H, Hu Y. Using micro-computed tomographyand scanning electron microscopy to assess the morphologicalevolution and fractal dimension of a salt-gypsum rock subjectedto a coupled thermal-hydrological-chemical environment[J]. Mar Petrol Geol, 2018, 98: 316-334. DOI: 10. 1016/j. marpe tgeo.2018. 8. 24.
    [17] 周其健, 郭永春, 屈智辉, 郑立宁, 许福周, 任跃勤. 某红层地基差异沉降原因分析[J]. 建筑科学, 2020, 36(11): 101-106.

    ZHOU Qijian, GUO Yongchun, QU Zhihui, ZHENG Lining, XU Fuzhou, REN Yueqin. Causes analysis of differential settlement of a red bed foundation[J]. Building Science, 2020, 36(11): 101-106.
    [18] 韩浩东, 王春山, 王东辉, 李鹏岳, 李华, 杨涛. 成都市白垩系灌口组富膏盐红层溶蚀特征与机理[J]. 中国岩溶, 2021, 40(5): 768-782.

    HAN Haodong, WANG Chunshan, WANG Donghui, LI Pengyue, LI Hua, YANG Tao. Dissolution characteristics and mechanism of gypsum-salt-rich-red beds in Cretaceous Guankou formation in Chengdu[J]. Carsologica Sinica, 2021, 40(5): 768-782.
    [19] 周其健. 成都隐伏石膏岩建筑地基异常沉降机理及处治技术研究[D]. 成都: 西南交通大学, 2021.

    Zhou Qijian. Study on mechanism and treatment technology of abnormal settlement of concealed gypsum rock building foundation in Chengdu[D]. Chengdu: Southwest Jiaotong University, 2021.
    [20] 周其健, 郭永春, 屈智辉, 郑立宁, 许福周, 谢强. 水热综合作用下钙芒硝盐岩强度等参数的衰减规律研究[J]. 工程地质学报, 2022, 30(4): 1019-1027.

    ZHOU Qijan, GUO Yongcun, QU Zhihui, ZHEN Lining, XU Fuqiang, XIE qiang. Strength decay law of glauberite salt rock with water and temperature[J]. Journal of Engineering Geology, 2022, 30(4): 1019-1027.
    [21] 徐文斌. 成都天府新区灌口组芒硝/石膏溶蚀规律研究[D]. 成都: 成都理工大学, 2020.

    Xu Wenbin. Study on dissolution of mirabilite/gypsum in Guankou Formation, Tianfu New Area[D]. Chengdu: Chengdu University of Technology, 2020.
    [22] 钟志彬, 冯杰, 吕蕾, 周其健, 李思嘉, 薛昌汭. 红层石膏夹层静动水溶蚀特性试验研究[J]. 中国岩溶, 2025,44(1): 15-23.

    ZHONG Zhibin, FENG Jie, LYU Lei, ZHOU Qijian, LI Sijia, XUE Changrui. Experimental study on static and dynamic water dissolution characteristics of red layer gypsum interlayer[J]. Carsologica Sinica, 2025,44(1):15-23.
    [23] 王子忠, 许模. 四川盆地含膏盐红层特征及坝基工程地质问题(I)[J]. 水利水电技术, 2011, 42(3): 10-12.

    Wang Zizhong, Xu Mo. Characteristics of red bed containing saline deposit and engineering geological issues of dam foundation in Sichuan Basin(I)[J]. Water Resources and Hydropower Engineering, 2011, 42(3): 10-12.
    [24] 韩继伟. 某场地红层岩溶发育特征及工程影响研究[D]. 成都: 成都理工大学, 2015.

    HAN Jiwei. Study on Project Impact and Development Features of the Red layer of karst of the venue[D]. Chengdu: Chengdu University of Technology, 2015.
    [25] James A N, Cooper A H, Holliday D W. Solution of the gypsum cliff Permian, Middle Marl. by the River Ure at Ripon Parks, North Yorkshire[J]. Yorkshire Geol. 1981, 43, 433−450.
    [26] Klimchouk A B, Aksem S D. Hydrochemistry and solution rates in gypsum karst: case study from the Western Ukraine[J]. Environ Geology, 2005, 48: 307-319. doi: 10.1007/s00254-005-1277-3
    [27] Aljubouri Z A, Al-Kawaz H A. Dissolution rate of gypsum under different environments[J]. Iraqi Journal of Earth Sciences, 2007, 7(2): 11-18.
    [28] Calligaris C, Ghezzi L, Petrini R, Lenaz D, Zini L. Evaporite Dissolution Rate through an on-site Experiment into Piezometric Tubes Applied to the Real Case-Study of Quinis (NE Italy)[J]. Geosciences, 2019, 9(7): 298. doi: 10.3390/geosciences9070298
    [29] Busetti A, Calligaris C, Zini L. Gypsum Dissolution Rate, New Data and Insights[A]//EuroKarst 2022, Málaga. Advances in Karst Science[C]. Springer, Cham.2023:207-213 https://doi.org/10.1007/978-3-031-16879-6_30.
    [30] 魏玉峰, 聂德新. 第三系红层中石膏溶蚀特性及其对工程的影响[J]. 水文地质工程地质, 2005(2): 62-64. doi: 10.3969/j.issn.1000-3665.2005.02.013

    WEI Yufeng, NIE Dexin. The speciality of gypsum dissolution of the Neogene red clay and its influence to engineering[J]. Hydrogeology & Engineering Geology, 2005(2): 62-64. doi: 10.3969/j.issn.1000-3665.2005.02.013
    [31] Jin Q X, Perry L N, Bullard J W. Temperature dependence of gypsum dissolution rates[J]. Cement and Concrete Research, 2020, 129, 105969. https://doi.org/10.1016/j.cemconres.2019.105969.
    [32] Peruffo M, Mbogoro M M, Edwards M A, Unwin P R. Holistic approach to dissolution kinetics: linking direction-specific microscopic fluxes, local mass transport effects and global macroscopic rates from gypsum etch pit analysis[J]. Phys Chem Chem Phys, 2013, 15(6): 1956-65. doi: 10.1039/c2cp43555a
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  224
  • HTML浏览量:  176
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-14
  • 录用日期:  2025-06-04
  • 修回日期:  2025-05-30
  • 网络出版日期:  2026-01-13
  • 刊出日期:  2025-10-25

目录

    /

    返回文章
    返回