• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渝东南岩溶区地下水水化学特征成因与健康风险评价

张贵权 朱爱萍 任坤 曾洁 彭聪 潘晓东 梁嘉鹏 宋晨 张文平 唐薇薇 蒋丹丝

张贵权,朱爱萍,任 坤,等. 渝东南岩溶区地下水水化学特征成因与健康风险评价[J]. 中国岩溶,2025,44(5):992-1005 doi: 10.11932/karst20250506
引用本文: 张贵权,朱爱萍,任 坤,等. 渝东南岩溶区地下水水化学特征成因与健康风险评价[J]. 中国岩溶,2025,44(5):992-1005 doi: 10.11932/karst20250506
ZHANG Guiquan, ZHU Aiping, REN Kun, ZENG Jie, PENG Cong, PAN Xiaodong, LIANG Jiapeng, SONG Chen, ZHANG Wenping, TANG Weiwei, JIANG Dansi. Causes of groundwater hydrochemical characteristics and assessment of health risk to humans in the karst area of southeastern Chongqing[J]. CARSOLOGICA SINICA, 2025, 44(5): 992-1005. doi: 10.11932/karst20250506
Citation: ZHANG Guiquan, ZHU Aiping, REN Kun, ZENG Jie, PENG Cong, PAN Xiaodong, LIANG Jiapeng, SONG Chen, ZHANG Wenping, TANG Weiwei, JIANG Dansi. Causes of groundwater hydrochemical characteristics and assessment of health risk to humans in the karst area of southeastern Chongqing[J]. CARSOLOGICA SINICA, 2025, 44(5): 992-1005. doi: 10.11932/karst20250506

渝东南岩溶区地下水水化学特征成因与健康风险评价

doi: 10.11932/karst20250506
基金项目: 广西自然科学基金(2023JJD150024);中国地质科学院岩溶地质研究所基本科研业务费项目(2023018);中国地质调查局地质调查项目(DD20250501408)
详细信息
    作者简介:

    张贵权(1997-), 硕士研究生, 主要研究方向:表层地球化学、水资源水环境。E-mail:zys669958@163.com

    通讯作者:

    任坤(1988-), 副研究员, 主要研究方向:岩溶水资源水环境。E-mail:rkhblhk@163.com

  • 中图分类号: P641.3

Causes of groundwater hydrochemical characteristics and assessment of health risk to humans in the karst area of southeastern Chongqing

  • 摘要: 岩溶水是重要的水资源,揭示其成因机制,开展质量评价及健康风险评估,对于岩溶水的合理开发利用与保护具有至关重要的意义。文章以渝东南岩溶水为研究对象,采用Gibbs图、多元统计分析、熵权水质指数(EWQI)和人类健康风险评估模型等方法研究该区域地下水水化学组成、水质状况,并开展健康风险评价。结果表明:(1)渝东南岩溶区地下水呈弱碱性,以HCO3-Ca型水为主;(2)水化学组分主要受控于水岩作用和人类活动,阳离子交换作用不明显;(3)渝东南岩溶区地下水总体水质优良,EWQI值范围为7.29~182.68,均值为21.83;(4)健康风险评估结果表明渝东南岩溶区个别地下水的TFe和${\rm{NO}}_3^{-}$超过儿童非致癌风险的可接受限值。研究成果可为渝东南岩溶水资源的开发利用和保护提供基础数据,也能为类似岩溶区地下水的研究提供可借鉴的方法手段。

     

  • 图  1  研究区地质概况与采样点分布示意图

    Figure  1.  Geological overview of the study area and schematic diagram of sampling point distribution

    图  2  研究区采样点水样Piper三线图

    Figure  2.  Piper of groundwater samples from the study area

    图  3  岩溶水水化学Gibbs图

    Figure  3.  Gibbs of karst groundwater chemistry(a and b)

    图  4  地下水样品的端元图

    Figure  4.  End member diagram of groundwater samples

    图  5  渝东南岩溶区地下水离子比值图

    Figure  5.  Ionic ratio map of karst area in southeast Chongqing

    图  6  地下水的$ {\mathrm{C}\mathrm{l}}^{-} $/$ {\mathrm{N}\mathrm{a}}^{+} $与$ {\mathrm{N}\mathrm{O}}_{3}^{-} $/$ {\mathrm{N}\mathrm{a}}^{+} $(a)、$ {\mathrm{N}\mathrm{O}}_{3}^{-} $/$ {\mathrm{C}\mathrm{l}}^{-} $与$ {\mathrm{C}\mathrm{l}}^{-} $(b)、$ {\mathrm{N}\mathrm{O}}_{3}^{-} $/$ {\mathrm{C}\mathrm{a}}^{2+} $与$ {\mathrm{S}\mathrm{O}}_{4}^{2-} $/$ {\mathrm{C}\mathrm{a}}^{2+} $(c)的关系图

    Figure  6.  Relationship between the ratios of $ {\mathrm{C}\mathrm{l}}^{-} $/$ {\mathrm{N}\mathrm{a}}^{+} $ vs $ {\mathrm{N}\mathrm{O}}_{3}^{-} $/$ {\mathrm{N}\mathrm{a}}^{+} $(a), $ {\mathrm{N}\mathrm{O}}_{3}^{-} $/$ {\mathrm{C}\mathrm{l}}^{-} $ vs $ {\mathrm{C}\mathrm{l}}^{-} $(b), $ {\mathrm{N}\mathrm{O}}_{3}^{-} $/$ {\mathrm{C}\mathrm{a}}^{2+} $ vs $ {\mathrm{S}\mathrm{O}}_{4}^{2-} $/$ {\mathrm{C}\mathrm{a}}^{2+} $(c) in groundwater

    图  7  研究区地下水不同水质指标与 EWQI 的相关性

    Figure  7.  Correlations between different groundwater quality indicators and the EWQI in the study area

    表  1  EWQI等级分类

    Table  1.   Classification of EWQI levels

    EWQI 值等级分类描述
    50≤EWQI1优质
    50<EWQI≤1002良好
    100<EWQI≤1503中等
    150<EWQI≤2004
    EWQI>2005极差
    下载: 导出CSV

    表  2  暴露剂量计算参数

    Table  2.   Calculation parameters of exposure dose

    参数含义单位成人参考值儿童参考值文献
    IR 平均每日饮水量L·d−121.25[22-23]
    EF 暴露频率d·a−1365365
    ED 持续暴露时间a309
    BW 平均体重kg57.119.6
    AT 平均暴露时间d74.68×36510×365
    SA 接触皮肤表面积cm2160009300
    ET 暴露时间h·d−10.63330.4167
    CF 体积转换因子L·cm−30.0010.001
    下载: 导出CSV

    表  3  研究区地下水水化学参数

    Table  3.   Groundwater hydrochemical parameters in the study area

    统计参数 最大值 最小值 平均值 标准差 变异系数 WHO(2017) 超标率
    pH 8.17 6.98 7.58 0.28 3.72 6.50~8.50 0.00
    Cl 28.31 0.24 3.69 4.14 112.21 250 0.00
    ${\rm{SO}}_4^{2-}$ 166.53 2.85 26.95 31.48 116.79 250 0.00
    ${\rm{HCO}}_3^{-}$ 392.34 56.89 195.04 70.17 35.98 400 0.00
    ${\rm{NO}}_3^{-}$ 60.38 <0.05 9.04 8.30 91.77 50 1.41
    K+ 4.06 0.1 1.23 0.81 66.39 30 0.00
    Na+ 22.2 0.3 2.45 3.55 144.76 200 0.00
    Ca2+ 113.7 20.22 60.67 20.95 34.53 200 0.00
    Mg2+ 34.99 1.36 10.09 8.91 88.22 150 0.00
    TDS 578.44 101.48 300.13 107.69 35.88 1000 0.00
    TFe 5.16 <0.005 0.1829 0.6332 346.22 0.3 8.45
    Mn 0.3750 <0.00006 0.0204 0.0562 275.06 0.1 4.23
    Al 0.8840 <0.0006 0.0840 0.1454 173.09 0.2 9.86
    Pb 0.0219 <0.00007 0.00041 0.00257 632.48 0.01 1.41
    注:表中各元素的单位均为 mg·L−1(pH除外),变异系数(%);超标率(%):超过世界卫生组织 (WHO)饮用水标准值的样品百分比(%);WHO提供的临时指导值(WHO,2017)。
    下载: 导出CSV

    表  4  逐步多元线性回归结果

    Table  4.   Results for stepwise multiple linear regression

    模型 线性 R2 P
    1 EWQI=15.682+33.644TFe 0.874 <0.001
    2 EWQI=0.007+32.445TFe+0.053TDS 0.936 <0.001
    3 EWQI=2.255+27.680TFe+0.042TDS+94.677Mn 0.968 <0.001
    4 EWQI=-0.933+19.514TFe+0.046TDS+84.927Mn+44.753Al 0.992 <0.001
    5 EWQI=-0.688+19.782TFe+0.039TDS+85.010Mn+44.482Al+0.260$ {\mathrm{N}\mathrm{O}}_{3}^{-} $ 0.997 <0.001
    下载: 导出CSV

    表  5  Fe、Mn、Al、$ {\mathrm{N}\mathrm{O}}_{3}^{-} $和Pb人类健康非致癌风险值统计

    Table  5.   Statistical values of non-carcinogenic risks of Fe, Mn, Al, $ {\mathrm{N}\mathrm{O}}_{3}^{-} $and Pb to humans

    金属统计项目HQoralHQdermalHI
    成人儿童成人儿童成人儿童
    TFe最大值0.242010.987240.016350.040810.258361.02805
    最小值0.000000.000000.000000.000000.000000.00000
    平均值0.008580.034990.000580.001450.009160.03644
    Mn最大值0.114710.467920.016350.115170.115170.46907
    最小值0.000000.000000.000000.000000.000000.00000
    平均值0.006250.025490.000030.000060.006270.02555
    Al最大值0.088850.362430.004500.011240.093350.37366
    最小值0.000000.000000.000000.000000.000000.00000
    平均值0.008440.034440.000430.001070.008870.03551
    ${\rm{NO}}_3^{-}$最大值0.530992.166060.002690.006720.533682.17277
    最小值0.000000.000000.000000.000000.000000.00000
    平均值0.077290.315290.000390.000980.077680.31627
    Pb最大值0.220100.897870.000000.000010.220110.89788
    最小值0.000000.000000.000000.000000.000000.00000
    平均值0.004140.016890.000000.000000.004140.01689
    注:参数与计算过程见2.3节(11)~(13)式和表2
    下载: 导出CSV
  • [1] DUAN Yan, GAO Xubo, LI Chengcheng, WANG Hong, KANG Caiqin, WANG Wanzhou, ZHANG Xin, SUN Zhuang, XIONG Yinzheng, WANG Yanxin. Combining hydrodynamics, geochemical and multiple isotopic tracers to understand the hydrogeological functioning of karst groundwater system in Jinci, Northern China[J]. Journal of Hydrology, 2025, 648: 132375. doi: 10.1016/j.jhydrol.2024.132375
    [2] 任坤, 曾洁, 彭聪, 潘晓东, 于正良, 吴华英. 玉龙雪山—丽江水体水化学和同位素特征及其变化规律与成因[J]. 地理学报, 2024, 79(11): 2864-2879. doi: 10.11821/dlxb202411011

    REN Kun, ZENG Jie, PENG Chong, PAN Xiaodong, YU Zhengliang, WU Huaying. Hydrochemical and isotopic characteristics, changes and controlling factors of waters in the Yulong Snow Mountain-Lijiang area, China[J]. Acta Geographica Sinica, 2024, 79(11): 2864-2879. doi: 10.11821/dlxb202411011
    [3] 袁道先, 薛禹群, 傅家谟. 防止我国西南岩溶地区地下河变成“下水道”的对策与建议[R]. 中国科学院院士建议, 2007, 4: 114.
    [4] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088
    [5] WANG Ping, ZHANG Wei, ZHU Yuchen, LIU Yaci, LI Yasong, CAO Shengwei, HAO Qichen, LIU Shenghua, KONG Xiangke, HAN Zhantao, LI Binghua. Evolution of groundwater hydrochemical characteristics and formation mechanism during groundwater recharge: A case study in the Hutuo River alluvial−pluvial fan, North China Plain[J]. Science of the Total Environment, 2024, 915: 170159. doi: 10.1016/j.scitotenv.2024.170159
    [6] Ariyan N T , Quraishi B S , Alam E N M, Khan R S M, Faria F F, Kabir A. Comprehensive analysis and human health risk assessment of tap water quality in Dhaka City, Bangladesh: Integrating source identification, index-based evaluation, and heavy metal assessment[J]. Journal of Hazardous Materials, 2024, 485: 136837.
    [7] Ioannis M, Christian M, Yuliya V, Hannu M, Natalie O, Søren J, Jaivime E, Mathieu S, Gerbrand K, Elias D, Sasha M, Yiannis P, Michael P S. Nitrate isotopes in catchment hydrology: Insights, ideas and implications for models[J]. Journal of Hydrology, 2023, 626(PB): 130326.
    [8] Vesković J, Timotić D I, Lučić M, Miletić A, Đolić M, Ra·ić S, Onjia A. Entropy-weighted water quality index, hydrogeochemistry, and Monte Carlo simulation of source-specific health risks of groundwater in the Morava River plain (Serbia)[J]. Marine Pollution Bulletin, 2024, 201: 1116277.
    [9] Zahra A, Ali M, Ali N, Khan A, Zairov R, Sinyashin O, WANG Yan, Zafar S, Khan A F. A comprehensive analysis of the impact of arsenic, fluoride, and nitrate−nitrite dynamics on groundwater quality and its health implications[J]. Journal of Hazardous Materials, 2025, 487: 137093. doi: 10.1016/j.jhazmat.2025.137093
    [10] SHENG Danrui, MENG Xianhong, WEN Xiaohu, WU Jun, YU Haijiao, WU Min, ZHOU Ting. Hydrochemical characteristics, quality and health risk assessment of nitrate enriched coastal groundwater in northern China[J]. Journal of Cleaner Production, 2023, 403: 136872.
    [11] Vesković J, Onjia A. Two-dimensional Monte Carlo simulation coupled with multilinear regression modeling of source-specific health risks from groundwater[J]. Journal of Hazardous Materials, 2025, 488: 137309. doi: 10.1016/j.jhazmat.2025.137309
    [12] LI Rui, YAN Yuting, XU Jiaqian, YANG Chang, CHEN Si, WANG Yangshuang, ZHANG Yunhui. Evaluate the groundwater quality and human health risks for sustainable drinking and irrigation purposes in mountainous region of Chongqing, Southwest China[J]. Journal of Contaminant Hydrology, 2024, 264: 104344. doi: 10.1016/j.jconhyd.2024.104344
    [13] YUAN Ruiqiang, LI Zhibin, GUO Siyu. Health risks of shallow groundwater in the five basins of Shanxi, China: Geographical, geological and human activity roles[J]. Environmental Pollution, 2022, 316(P1): 120524.
    [14] 樊连杰, 裴建国, 邹胜章, 杜毓超, 卢丽. 重庆市南川区南部岩溶地下水水文地球化学特征[J]. 中国岩溶, 2017, 36(5): 697-703.

    FAN Lianjie, PEI Jianguo, ZOU Shengzhang, DU Yuchao, LU Li. Hydrogeochemical characteristics of karst groundwater in southern Nanchuan district of Chongqing[J]. Carsologica Sinica, 2017, 36(5): 697-703.
    [15] 肖旭芳, 张双龙, 郭雯, 王敬富, 杨海全, 廖鹏. 西南喀斯特地区地表水和地下水环境污染特征与研究展望[J]. 地球与环境, 2023, 51(5): 564-573.

    XIAO Xufang, ZHANG Shuanglong, GUO Wen, WANG Jingfu, YANG Haiquan, LIAO Peng. Environmental Pollution Characteristics of Surface Water and Groundwater in Southwest China and Its Research Prospects[J]. Earth and Environment, 2023, 51(5): 564-573.
    [16] 肖成芳, 魏兴萍, 张爱国, 陈英. 重庆市岩溶泉发育特征与流量控制机制分析[J]. 地理科学进展, 2022, 41(4): 693-706. doi: 10.18306/dlkxjz.2022.04.013

    XIAO Chengfang, WEI Xingping, ZHANG Aiguo, CHEN Ying. Development characteristics and flow control mechanism of karst springs in Chongqing Municipality[J]. Progress in Geography, 2022, 41(4): 693-706. doi: 10.18306/dlkxjz.2022.04.013
    [17] 刘兴兵, 程军, 唐本锋, 张丽红. 重庆市上二叠统硫铁矿沉积环境及成矿模式[J]. 地质科技情报, 2013, 32(1): 148-154.

    LIU Xingbing, CHENG Jun, TANG Benfeng, ZHANG Lihong. Upper Permian sedimentary environment and metallogenic model of pyrite in Chongqing[J]. Geological Science and Technology Information, 2013, 32(1): 148-154.
    [18] 田欢欢, 樊海峰, 何明勤, 刘喜强, 杨若飞, 梁坤萍, 郑茂尧. 重庆秀山地区大塘坡组锰矿稀土元素地球化学研究[J]. 矿物岩石地球化学通报, 2022, 41(3): 557-571.

    TIAN Huanhuan, FAN Haifeng, HE Mingqin, LIU Xiqiang, YANG Ruofei, LIANG Kunping, ZHENG Maoyao. A study on REE geochemistry of the Datangpo Formation-hosted manganese deposits in the Xiushan area, Chongqing, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(3): 557-571.
    [19] 刘平, 韩忠华, 聂坤. 黔中—渝南岩溶型铝土矿含矿岩系特征、控制条件及生成发展模式[J]. 地质论评, 2022, 68(6): 147-174.

    LIU Ping, HAN Zhonghua, NIE Kun. Characteristics of ore-bearing rock series, control conditions and generative development model of karst bauxite deposit in central Guizhou—southern Chongqing[J]. Geological Reviw, 2022, 68(6): 147-174.
    [20] LI Jun, YANG Guoli, ZHU Danni, XIE Hao, ZHAO Yi, FAN Lianjie, ZOU Shengzhang. Hydrogeochemistry of karst groundwater for the environmental and health risk assessment: The case of the suburban area of Chongqing (Southwest China)[J]. Geochemistry, 2022, 82(2): 125866. doi: 10.1016/j.chemer.2022.125866
    [21] LIU Jiutan, LOU Kexin, GAO Zongjun, WANG Yabo, LI Qiang, TAN Menghan. Comprehending hydrochemical fingerprint, spatial patterns, and driving forces of groundwater in a topical coastal plain of Northern China based on hydrochemical and isotopic evaluations[J]. Journal of Cleaner Production, 2024, 461: 142640. doi: 10.1016/j.jclepro.2024.142640
    [22] ZHANG Shuai, HAN Yingyue, PENG Jingyu, CHEN Yunmin, ZHAN Liangtong, LI Jinlong. Human health risk assessment for contaminated sites: A retrospective review[J]. Environment International, 2023, 171: 107700. doi: 10.1016/j.envint.2022.107700
    [23] 王袆曼, 葛勤, 危超, 李翔, 刘海燕, 李昕妍. 南方某尾矿区地下水金属元素来源解析及健康风险评价[J]. 环境科学, 2025, 46(6): 3429-3439.

    WANG Yiman, GE Qin, WEI Chao, LI Xiang, LIU Haiyan, LI Xinyan. Source and health risk assessment of groundwater metal elements of a tailings mining area in Southern China[J]. Environmental Science, 2025, 46(6): 3429-3439.
    [24] 谷志琪, 卞建民, 王宇, 马丽欣, 孙晓庆, 阮冬梅. 长白山源头区地下水质评价及监测指标优化[J]. 中国环境科学, 2023, 43(10): 5257-5264. doi: 10.3969/j.issn.1000-6923.2023.10.024

    GU Zhiqi, BIAN Jianmin, WANG Yu, MA Lixin, SUN Xiaoqing, RUAN Dongmei. Groundwater quality assessment and index optimization of water quality monitoring in the water source area of Changbai Mount[J]. China Environmental Science, 2023, 43(10): 5257-5264. doi: 10.3969/j.issn.1000-6923.2023.10.024
    [25] Piper A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Transactions American Geophysical Union, 1944, 25(6): 914-928. doi: 10.1029/TR025i006p00914
    [26] 令狐昌卫, 邹石林, 管继云, 柴楚, 杨浪浪, 和成忠, 朱平平, 寸得欣, 刘振南, 朱星强, 徐磊. 滇东富源典型煤矿区地下水水化学特征及水质评价[J/OL]. 中国地质, 1-21[2025-02-11].

    LINGHU Changwei, ZOU Shilin, GUAN Jiyun, CHAI Chu, YANG Langlang, HE Chengzhong, ZHU Pingping, CUN Dexin, LIU Zhennan, ZHU Xingqiang, XU Lei. Hydrochemical characteristics and quality assessment of groundwater in typical coal mining areas of Fuyuan, Eastern Yunnan[J/OL]. Geology in China, 1-21[2025-02-11].
    [27] Gaillardet J, Dupré B, Louvat P, Allègre J C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1-4): 3-30. doi: 10.1016/S0009-2541(99)00031-5
    [28] XIAO Jun, WANG Lingqing, CHAI Ningpan, LIU Ting, JIN Zhangdong, Rinklebe Jörg. Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau[J]. Environmental Pollution, 2021, 278: 116930. doi: 10.1016/j.envpol.2021.116930
    [29] 曹明达. 运用多同位素识别典型农业小流域水环境硝酸盐来源及生物地球化学过程[D]. 武汉: 中国地质大学(武汉), 2022.

    CAO Mingda. Identification of nitrate sources and biogeochemical processes in typical agricultural watershed with multi-isotope analysis: A case study of Quanshui River watershed[D]. Wuhan: China University of Geosciences(Wuhan), 2022.
    [30] 王楠, 胥芹, 孙小艳, 武显仓, 李常锁, 高帅. 趵突泉泉域岩溶水化学特征及成因研究[J]. 中国岩溶, 2024, 43(2): 279-290. doi: 10.11932/karst20240203

    WANG Nan, XU Qin, SUN Xiaoyan, WU Xiancang, LI Changsuo, GAO Shuai. Hydrochemical characteristics and formation mechanismof karst water in Baotu Spring watershed[J]. Carsologica Sinica, 2024, 43(2): 279-290. doi: 10.11932/karst20240203
    [31] LIU Jiutan, GAO Zongjun, FENG Jianguo, WANG Min. Identification of the hydrochemical features, genesis, water quality and potential health hazards of groundwater in Dawen River Basin, North China[J]. Ecological Indicators, 2023, 149: 110175.
    [32] 江峰, 吉勤克补子, 曹建文, 王若帆, 赵良杰. 黔中岩溶区地下水水化学来源特征及其影响因素[J]. 中国岩溶, 2024, 43(4): 889-899. doi: 10.11932/karst2024y028

    JIANG Feng, JIQIN Kebuzi, CAO Jianwen, WANG Ruofan, ZHAO Liangjie. Source characteristics and influencing factors of groundwater hydrochemistry in the karst areas of central Guizhou[J]. Carsologica Sinica, 2024, 43(4): 889-899. doi: 10.11932/karst2024y028
    [33] 张文强, 滕跃, 唐飞, 王金晓, 许庆宇, 张海林. 山东省肥城断块岩溶水系统地下水水化学特征及演化分析[J]. 中国岩溶, 2023, 42(5): 1047-1060, 1084. doi: 10.11932/karst20230515

    ZHANG Wenqiang, TENG Yue, TANG Fei, WANG Jinxiao, XU Qingyu, ZHANG Hailin. Groundwater hydrochemical characteristics and evolution of the karst water system in the Feicheng fault block in Shandong Province[J]. Carsologica Sinica, 2023, 42(5): 1047-1060, 1084. doi: 10.11932/karst20230515
    [34] 戈德沙伊德, 德鲁, 陈宏峰, 何愿. 岩溶水文地质学方法[M]. 北京: 科学出版社, 2016.

    GOLDSCHEIDER Nico, DREW David, CHEN Hongfeng, HE Yuan. Methods in Karst Hydrogeology[M]. Beijing: Science Press, 2016.
    [35] 苏丹, 周忠发, 龚晓欢, 丁圣君, 董慧, 闫利会, 熊勇. 岩溶洞穴水中硝酸盐浓度变化及其来源与估算[J]. 中国环境科学, 2023, 43(11): 5812-5822. doi: 10.3969/j.issn.1000-6923.2023.11.019

    SU Dan, ZHOU Zhongfa, GONG Xiaohuan, DING Shengjun, DONG Hui, YAN Lihui, XIONG Yong. Variation of nitrate concentration in karst cave water and its sources and estimation[J]. China Environmental Science, 2023, 43(11): 5812-5822. doi: 10.3969/j.issn.1000-6923.2023.11.019
    [36] LIU Jiutan, PENG Yuming, LI Changsuo, GAO Zongjun, CHEN Shaojie. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assess-ment of the risk of high groundwater nitrate levels to human health[J]. Environmental Pollution, 2021, 268(B): 115947.
    [37] WANG Wenlin, YANG Jiasen, YANG Fang, YANG Liu, XU Xiaoguang, TAO Yulong, AO Wen, LIU Bo, JIN Qiu, WANG Guoxiang. Mixed nitrogen inputs affected nitrate distribution and biogeochemical processes during ice-covered and ice-free periods in a boreal eutrophic steppe lake basin[J]. Applied Geochemistry, 2025, 182: 106333. doi: 10.1016/j.apgeochem.2025.106333
    [38] 吴华英, 李腾芳, 程瑞瑞, 黄奇波, 潘晓东. 我国岩溶地下水受污染的原因与污染特征[J]. 中国矿业, 2021, 30(S1): 101-104. doi: 10.12075/j.issn.1004-4051.2021.S1.095

    WU Huaying, LI Tengfang, CHENG Ruirui, HUANG Qibo, PAN Xiaodong. Causes and characteristics of the pollution of karst groundwater in China[J]. China Mining Magazine, 2021, 30(S1): 101-104. doi: 10.12075/j.issn.1004-4051.2021.S1.095
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  403
  • HTML浏览量:  290
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 录用日期:  2025-05-06
  • 修回日期:  2025-02-18
  • 网络出版日期:  2026-01-13
  • 刊出日期:  2025-10-25

目录

    /

    返回文章
    返回