• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氡动态在岩溶泉洪水过程解析上的应用

李志杰 姜光辉 郭芳 刘凡 韦丽琼 王奇岗

李志杰,姜光辉,郭 芳,等. 氡动态在岩溶泉洪水过程解析上的应用−以桂林丫吉试验场为例[J]. 中国岩溶,2025,44(5):949-958 doi: 10.11932/karst20250503
引用本文: 李志杰,姜光辉,郭 芳,等. 氡动态在岩溶泉洪水过程解析上的应用−以桂林丫吉试验场为例[J]. 中国岩溶,2025,44(5):949-958 doi: 10.11932/karst20250503
LI Zhijie, JIANG Guanghui, GUO Fang, LIU Fan, WEI Liqiong, WANG Qigang. Application of radon dynamics in analyzing karst spring flood processes: A case study of the Yaji Experimental Site, Guilin[J]. CARSOLOGICA SINICA, 2025, 44(5): 949-958. doi: 10.11932/karst20250503
Citation: LI Zhijie, JIANG Guanghui, GUO Fang, LIU Fan, WEI Liqiong, WANG Qigang. Application of radon dynamics in analyzing karst spring flood processes: A case study of the Yaji Experimental Site, Guilin[J]. CARSOLOGICA SINICA, 2025, 44(5): 949-958. doi: 10.11932/karst20250503

氡动态在岩溶泉洪水过程解析上的应用——以桂林丫吉试验场为例

doi: 10.11932/karst20250503
基金项目: 国家自然科学基金资助项目(42172287,42272303,42302296);广西重点研发计划项目(桂科AB24010054);桂林岩溶地质广西野外科学观测研究站(科研能力建设)(桂科23-026-274);中建基础课题“岩溶强发育区地下城际铁路建造关键技术研究”(CSCIC-2022-KT-(01))
详细信息
    作者简介:

    李志杰(1995—) ,男,博士研究生,主要从事岩溶水文地质方面的研究。E-mail:lizhijie_cn@163.com

    通讯作者:

    姜光辉(1977—),男,博士,教授,主要从事岩溶水文地质研究,E-mail:bmnxz@126.com

    郭芳(1978-),女,博士,研究员,主要从事岩溶水文地质研究,E-mail:gfkarst@126.com

  • 中图分类号: P641.2

Application of radon dynamics in analyzing karst spring flood processes: A case study of the Yaji Experimental Site, Guilin

  • 摘要: 对岩溶水系统降雨的响应过程进行解析是理解其非均质结构及调蓄机制的重要途径。峰丛洼地含水系统具有以管道为主和裂隙相结合的结构特征,水文过程对降雨响应迅速,容易引发洪水。为深入探究这一复杂系统的洪水形成机制,以桂林丫吉试验场为例,选择三场典型降雨事件进行解析。对泉水的水文、电导率、氢稳定同位素(δ2H)和氡放射性同位素(222Rn)进行高分辨率监测,获取降雨补给激发的岩溶泉洪水过程,分析径流组成并计算事件水比例。结果发现:(1)三场降雨事件中岩溶泉流量峰值滞后降雨峰值5~12 h;(2)电导率在流量峰值后显著下降,而222Rn活度的峰值滞后电导率峰值十余小时,反映了事件水通过不同路径进入系统。电导率的变化归因于坡面地表径流迅速补给,而222Rn滞后是因为其主要通过土壤和表层岩溶带补给,δ2H的波动则表明事件水与其他来源水的复杂补给过程;(3)不同示踪剂对事件水的响应存在差异,这种差异受到降雨强度的影响,并反映了入渗路径的不同所导致的水文响应结果的变化。

     

  • 图  1  丫吉试验场水文地质图与剖面示意图

    (A为丫吉试验场平面水文地质图 B、C分别为B-B’、C-C’剖面示意图)

    Figure  1.  Hydrogeological map and cross-sectional diagrams of the experimental site

    (A represents the hydrogeological map of the field experimental site, while B and C are the cross-sectional diagrams along sections B-B' and C-C', respectively)

    图  2  S31泉水全年电导率、水位与降雨的关系

    Figure  2.  Annual variations in conductivity, water level, and rainfall at Spring S31

    图  3  三次洪水过程中S31号泉的水文和水化学变化

    Figure  3.  Hydrological and geochemical changes at Spring S31 during three flood events

    图  4  场雨二和场雨三中S31岩溶泉径流识别结果

    Figure  4.  Runoff identification results for Spring S31 during rainfall events 2 and 3

    图  5  岩溶系统水文过程概念模型图

    Figure  5.  Conceptual model of the hydrological process in a karst system

    表  1  场雨特征统计

    Table  1.   Statistical summary of rainfall characteristics during the monitoring period

    场雨 时间 持续时间
    /h
    降雨量
    /mm
    最大雨强
    /mm·h−1
    流量最大值
    /L·s−1
    2022/4/25 4:00 93 73 32 1246
    2022/5/9 10:00 124 97 19 631
    2022/6/4 5:00 135 235 45 2185
    下载: 导出CSV
  • [1] 马天文, 徐国策, 赵超志, 毛金沙, 徐明珠, 熊海晶, 魏全, 方康, 万顺. 基于氢氧稳定同位素示踪的秦岭森林小流域径流水源解析[J]. 地球科学与环境学报, 2022, 44(3): 545-557.

    MA Tianwen, XU Guoce, ZHAO Chaozhi, MAO Jinsha, XU Mingzhu, XIONG Haijing, WEI Quan, FANG Kang, WAN Shun. Water Source Analysis of Runoff in Qinling Forest Small Watershed, China Based on H-O Stable Isotope Tracing[J]. Journal of Earth Science and Environment, 2022, 44(3): 545-557.
    [2] 王国庆, 翟然, 万思成, 刘艳丽, 许意军. 清流河流域场次暴雨洪水特征及其对降水的响应关系[J]. 水资源与水工程学报, 2015, 26(4): 7-11.

    WANG Guoqing, ZHAI Ran, WAN Sicheng, LIU Yanli, XU Yijun. Characteristics of storm floods and its responses to precipitation indices for the Qingliu River catchment[J]. Journal of Water Resources & Water Engineering, 2015, 26(4): 7-11.
    [3] 姜光辉, 于奭, 常勇. 利用水化学方法识别岩溶水文系统中的径流[J]. 吉林大学学报(地球科学版), 2011, 41(5): 1535-1541.

    JIANG Guanghui, YU Shi, CHANG Yong. Identification of Runoff in Karst Hydrological Systems Using Hydrochemical Methods[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5): 1535-1541.
    [4] Liu F, Jiang G H, Wang G C, Guo F, Wang J, Wang Q G, Shi J, Cai J Y, Wang M. Surface-subsurface hydrological processes of rainwater harvesting project in karst mountainous areas indicated by stable hydrogen and oxygen isotopes[J]. Science of The Total Environment, 2022, 831: 154924. doi: 10.1016/j.scitotenv.2022.154924
    [5] 罗明明, 尹德超, 张亮, 陈植华, 周宏, 韩兆丰, 史婷婷. 南方岩溶含水系统结构识别方法初探[J]. 中国岩溶, 2015, 34(6): 543-550. doi: 10.11932/karst20150602

    LUO Mingming, YIN Dechao, ZHANG Liang, CHEN Zhihua, ZHOU Hong, HAN Zhaofeng, SHI Tingting. Identifying methods of karst aquifer system structure in South China[J]. Carsologica Sinica, 2015, 34(6): 543-550. doi: 10.11932/karst20150602
    [6] 瞿思敏, 包为民, Jeffrey J. Mc Donnell, 余钟波, 石朋. 同位素示踪剂在流域水文模拟中的应用[J]. 水科学进展, 2008(4): 587-596.

    QU Simin, BAO Weimin, Jeffrey J. Mc Donnell , YU Zhongbo, SHI Peng. Application of Isotopic Tracers in Watershed Hydrological Modeling[J]. Advances in Water Science, 2008(4): 587-596.
    [7] Kim H, Cho S H, Lee D, Jung Y Y, Kim Y H, Koh D C, Lee J. Influence of pre-event water on streamflow in a granitic watershed using hydrograph separation[J]. Environmental Earth Sciences, 2017, 76(2): 82. doi: 10.1007/s12665-017-6402-6
    [8] Sukanya S, Noble J, Joseph S. Application of radon (222Rn) as an environmental tracer in hydrogeological and geological investigations: An overview[J]. Chemosphere, 2022, 303: 135141. doi: 10.1016/j.chemosphere.2022.135141
    [9] 郭永丽, 吴佩艳, 黄芬, 孙平安, 苗迎, 刘绍华. 环境同位素示踪的毛村地下河流域水流特征[J]. 中国岩溶, 2022, 41(4): 577-587.

    GUO Yongli, WU Peiyan, HUANG Fen, SUN Pingan, MIAO Ying, LIU Shaohua. Water flow characteristics of Maocun underground river basin based on environmental isotopes[J]. Carsologica Sinica, 2022, 41(4): 577-587.
    [10] 廖福, 罗新, 谢月清, 易立新, 李海龙, 王广才. 氡(222Rn)在地下水-地表水相互作用中的应用研究进展[J]. 地学前缘, 2022, 29(3): 76-87.

    LIAO Fu, LUO Xin, XIE Yueqing, YI Lixin, LI Hailong, WANG Guangcai. Advances in 222Rn application in the study of groundwater-surface water interactions[J]. Earth Science Frontiers, 2022, 29(3): 76-87.
    [11] 何炳毅, 杨英魁, 孔凡翠, 左进超, 范志平, 雷占昌, 蒋常菊, 王建萍, 凌智永, 郑雁莉. 青海湖布哈河流域枯水期氢氧同位素和氡同位素分布特征及其意义[J]. 地质学报, 2023, 97(6): 2042-2053.

    HE Bingyi, YANG Yingkui, KONG Fancui, ZUO Jinchao, FAN Zhiping, LEI Zhanchang, JIANG Changju, WANG Jianping, LING Zhiyong, ZHENG Yanli. The distribution characteristics and significance of stable (δD and δ18O) and radon-222 isotopes in the Buha River basin of Qinghai Lake during dry season[J]. Acta Geologica Sinica, 2023, 97(6): 2042-2053.
    [12] Tan H B, Chen X, Shi D P, Rao W B, Liu J, Liu J T, Eastoe C J, Wang J R. Base flow in the Yarlungzangbo River, Tibet, maintained by the isotopically-depleted precipitation and groundwater discharge[J]. Science of The Total Environment, 2021, 759: 143510. doi: 10.1016/j.scitotenv.2020.143510
    [13] 郭占荣, 李开培, 袁晓婕, 章斌, 马志勇. 用氡-222评价五缘湾的地下水输入[J]. 水科学进展, 2012, 23(2): 263-270.

    GUO Zhanrong, LI Kaipei, YUAN Xiaojie, ZHANG Bin, MA Zhiyong. Assessment of Groundwater Input to Wuyuan Bay Using Radon-222[J]. Advances in Water Science, 2012, 23(2): 263-270.
    [14] A Kies, H Hofmann, Z Tosheva, L Hoffmann, L Pfister. Using 222Rn for hydrograph separation in a micro basin (Luxembourg)[J]. Annals of Geophysics, 2009, 48(1). 101-107.
    [15] 周冰洁. 岩溶区土壤氡异常及其成因研究[D]. 衡阳: 南华大学, 2021.

    ZHOU Bingjie. Anomaly and causes of soil radon in karst area[D]. Hengyang: University of South China, 2021.
    [16] Ma Q, Zhou B J, Feng Z G, Bai J L, Zhang L Y, Liu W. A preliminary study on soil radon anomaly and its formation mechanism in karst area of southwest China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(5): 2045-2054. doi: 10.1007/s10967-022-08259-4
    [17] Burnett W C, Dulaiova H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements[J]. Journal of Environmental Radioactivity, 2003, 69(1-2): 21-35. doi: 10.1016/S0265-931X(03)00084-5
    [18] 马浩天, 甄志磊, 武小钢. 汾河源头水源稳定同位素特征及水源解析[J]. 环境化学, 2021, 40(11): 3432-3442. doi: 10.7524/j.issn.0254-6108.2021022102

    MA Haotian, ZHEN Zhilei, WU Xiaogang. Stable isotope characteristics of the headstream region of Fenhe River and water resource analysis[J]. Environmental Chemistry, 2021, 40(11): 3432-3442. doi: 10.7524/j.issn.0254-6108.2021022102
    [19] 赵思远, 贾仰文, 唐颖栋, 牛存稳, 燕翔, 龚家国, 甘永德. 基于同位素示踪的黄土塬区小流域径流组分来源解析研究[J]. 水利水电技术(中英文), 2022, 53(8): 58-70.

    ZHAO Siyuan, JIA Yangwen, TANG Yingdong, NIU Cunwen, YAN Xiang, GONG Jiaguo, GAN Yongde. Study on runoff components in small watershed in loess tableland based on isotope tracing[J]. Water Resources and Hydropower Engineering, 2022, 53(8): 58-70.
    [20] 潘钊, 孙自永, 马瑞, 常启昕, 胡雅璐, 刘源, 王旭. 黑河上游高寒山区降雨-径流形成过程的同位素示踪[J]. 地球科学, 2018, 43(11): 4226-4236.

    PAN Zhao, SUN Ziyong, MA Rui, CHANG Qixin, HU Yalu, LIU Yuan, WANG Xu. Isotopic Investigation of Rainfall-Runoff Generation in an Alpine Catchment in Headwater Regions of Heihe River, Northeast Qinghai-Tibet Plateau[J]. Earth Science, 2018, 43(11): 4226-4236.
    [21] Sklash M G, Farvolden R N. The role of groundwater in storm runoff[J]. Journal of Hydrology, 1979, 43(1-4): 45-65. doi: 10.1016/0022-1694(79)90164-1
    [22] 郭芳, 韦丽琼, 姜光辉. 广西典型岩溶水系统环境中222Rn的分布及指示意义[J]. 中国环境科学, 2021, 41(9): 4294-4299.

    GUO Fang, WEI Liqiong, JIANG Guanghui. Characteristic of radon in typical karst water systems and its indicating significance in Guangxi, China[J]. China Environmental Science, 2021, 41(9): 4294-4299.
    [23] Hoehn E, Von Gunten H R. Radon in groundwater: A tool to assess infiltration from surface waters to aquifers[J]. Water Resources Research, 1989, 25(8): 1795-1803. doi: 10.1029/WR025i008p01795
    [24] Pinder G F, Jones J F. Determination of the ground-water component of peak discharge from the chemistry of total runoff[J]. Water Resources Research, 1969, 5(2): 438-445. doi: 10.1029/WR005i002p00438
    [25] 常勇, 姜光辉, 康彩霞, 于奭. 峰丛洼地坡面流径流过程:以丫吉试验场为例[J]. 水文, 2010, 30(6): 19-23.

    CHANG Yong, JIANG Guanghui, KANG Caixia, YU Shi. Runoff Processes on Slope Surfaces in Peak-Cluster Depressions: A Case Study from the Yaji Experimental Site[J]. Journal of China Hydrology, 2010, 30(6): 19-23.
    [26] Tallini M, Parisse B, Petitta M, Spizzico M. Long-term spatio-temporal hydrochemical and 222Rn tracing to investigate groundwater flow and water−rock interaction in the gran sasso (central italy) carbonate aquifer[J]. Hydrogeology Journal, 2013, 21(7): 1447-1467. doi: 10.1007/s10040-013-1023-y
    [27] Monnin M, Seidel J. Radon concentrations in karstic aquifers[J]. Geofísica Internacional, 2002, 41(3): 265-270.
    [28] 姜光辉, 郭芳. 岩溶水柜集流坡面的径流模式和调控建议[J]. 水科学进展, 2021, 32(2): 271-278.

    JIANG Guanghui, GUO Fang. The Runoff Pattern and Regulation Recommendations for Converging Slopes in Karst Water Reservoirs[J]. Advances in Water Science, 2021, 32(2): 271-278.
    [29] 常勇, 吴吉春, 姜光辉, 于奭. 峰丛洼地岩溶泉流量和水化学变化过程中地面径流的作用[J]. 水利学报, 2012, 43(9): 1050-1057.

    CHANG Yong, WU Jichun, JIANG Guanghui, YU Shi. The Role of Surface Runoff in the Discharge and Hydrochemical Variations of Karst Springs in Peak-Cluster Depressions[J]. Journal of Hydraulic Engineering, 2012, 43(9): 1050-1057.
    [30] Wang S, Fu Z Y, Chen H S, Nie Y P, Xu Q X. Mechanisms of surface and subsurface runoff generation in subtropical soil-epikarst systems: Implications of rainfall simulation experiments on karst slope[J]. Journal of Hydrology, 2020, 580: 124370. doi: 10.1016/j.jhydrol.2019.124370
    [31] 郭小娇, 龚晓萍, 汤庆佳, 陈长杰, 姜光辉, 李鑫, 邹艳娥. 典型岩溶山坡土壤剖面水分对降雨响应过程研究[J]. 中国岩溶, 2016, 35(6): 629-638.

    GUO Xiaojiao, GONG Xiaoping, TANG Qingjia, CHEN Changjie, JIANG Guanghui, LI Xin, ZOU Yan’e. The response processes of moisture at soil profile to precipitation in typical karst hillslopes[J]. Carsologica Sinica, 2016, 35(6): 629-638.
    [32] Wang Y, Dai Q H, Ding P W, Li K F, Yi X, He J, Peng X, Yan Y, Zhao M, Yang Y. Rapid Response of Runoff Carrying Nitrogen Loss to Extreme Rainfall in Gentle Slope Farmland in the Karst Area of SW China[J]. Water, 2022, 14(20): 3341. doi: 10.3390/w14203341
    [33] 刘再华, Chris GROVES, 袁道先, Joe MEIMAN, 姜光辉, 何师意. 水-岩-气相互作用引起的水化学动态变化研究: 以桂林岩溶试验场为例[J]. 水文地质工程地质, 2003(4): 13-18. doi: 10.3969/j.issn.1000-3665.2003.04.003

    LIU Zaihua, Chris GROVES, YUAN Daoxian, Joe MEIMAN, JIANG Guanghui, HE Shiyi. Study on the hydrochemical variations caused by the water-rock-gas interaction : an example from the Guilin Karst Experimental Site[J]. Hydrogeology & Engineering Geology, 2003(4): 13-18. doi: 10.3969/j.issn.1000-3665.2003.04.003
    [34] Jiang G H, Guo F, Polk J S, Kang Z Q, Wu J. Delineating vulnerability of karst aquifers using hydrochemical tracers in Southwestern China[J]. Environmental Earth Sciences, 2015, 74(2): 1015-1027. doi: 10.1007/s12665-014-3862-9
    [35] Fu Z Y, Chen H S, Zhang W, Xu Q X, Wang S, Wang K L. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study[J]. Geomorphology, 2015, 250: 1-14. doi: 10.1016/j.geomorph.2015.08.012
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  381
  • HTML浏览量:  279
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-31
  • 录用日期:  2025-05-09
  • 修回日期:  2025-04-12
  • 网络出版日期:  2026-01-13
  • 刊出日期:  2025-10-25

目录

    /

    返回文章
    返回