• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶泉日流量预测的深度学习模型对比:LSTM与混合 VMD-LSTM

杨杨 赵良杰

杨 杨,赵良杰. 岩溶泉日流量预测的深度学习模型对比:LSTM与混合 VMD-LSTM[J]. 中国岩溶,2025,44(5):937-948 doi: 10.11932/karst20250502
引用本文: 杨 杨,赵良杰. 岩溶泉日流量预测的深度学习模型对比:LSTM与混合 VMD-LSTM[J]. 中国岩溶,2025,44(5):937-948 doi: 10.11932/karst20250502
YANG Yang, ZHAO Liangjie. Comparative study of deep learning models for daily karst spring discharge forecasting: LSTM Versus Hybrid VMD–LSTM[J]. CARSOLOGICA SINICA, 2025, 44(5): 937-948. doi: 10.11932/karst20250502
Citation: YANG Yang, ZHAO Liangjie. Comparative study of deep learning models for daily karst spring discharge forecasting: LSTM Versus Hybrid VMD–LSTM[J]. CARSOLOGICA SINICA, 2025, 44(5): 937-948. doi: 10.11932/karst20250502

岩溶泉日流量预测的深度学习模型对比:LSTM与混合 VMD-LSTM

doi: 10.11932/karst20250502
基金项目: 国家重点研发课题(2024YFC3713001);岩溶水资源与环境贵州省院士工作站(黔科合平台KXJZ[2024]005);贵州省地热水和矿泉水顶尖专家团队(黔科合人才CXTD[2025]003);中国地质科学院岩溶地质研究所基本科研业务费(2022012)
详细信息
    作者简介:

    杨杨(1987-),女,高级工程师,硕士,从事岩溶水资源评价工作。E-mail: yangyang_a@mail.cgs.gov.cn

    通讯作者:

    赵良杰(1986-),男,副研究员,博士,从事岩溶水资源评价工作。E-mail: zhaoliangjie0@gmail.com

  • 中图分类号: P641.2

Comparative study of deep learning models for daily karst spring discharge forecasting: LSTM Versus Hybrid VMD–LSTM

  • 摘要: 岩溶泉流量具有强非平稳与多尺度耦合特征,给精确预测带来挑战。为同时提升预测精度与物理可解释性,文章提出将变分模态分解(VMD)与长短期记忆网络(LSTM)耦合的 VMD-LSTM 框架:先用 VMD 将泉流量序列分解为若干本征模态,再与降雨共同作为输入,驱动两层 LSTM 进行建模;并以标准 LSTM 为基线开展对比评估。以桂林寨底岩溶系统 2013—2023 年日尺度数据为研究对象,VMD-LSTM 在训练、验证与测试阶段均优于基线模型;其中测试期达到纳什效率系数=0.951、均方根误差=0.524,且峰值均方根误差(观测前5%)下降 75.2%,显著增强了对极端事件的刻画能力。结果表明:VMD 可有效缓解原序列的非平稳与模态混叠,使 LSTM 更稳定地捕捉“快响应—慢退水”的动力学过程。该方法对岩溶区洪水预警与水资源调度具有现实应用价值。

     

  • 图  1  寨底岩溶地下河系统水文地质简图

    Figure  1.  Hydrogeological sketch map of the Zhaidi karst underground river system

    图  2  寨底岩溶地下河系统泉流量与降雨时间序列(2013-2023)

    Figure  2.  Time series of spring discharge and precipitation in the Zhaidi karst underground river system (from 2013 to 2023)

    图  3  LSTM神经网络结构

    Figure  3.  Architecture of the LSTM neural network

    图  4  VMD-LSTM方法流程图

    Figure  4.  Workflow of the hybrid VMD−LSTM method

    图  5  泉流量分解Mode 5-10模态函数

    Figure  5.  Spring discharge decomposition mode(mode 5 to mode 10) into Intrinsic Mode Functions (IMFs)

    图  6  训练期和验证期损失函数(a.LSTM模型, b.VMD-LSTM模型)

    Figure  6.  Loss functions of training phase and validation phase(a.LSTM, b.VMD-LSTM)

    图  7  不同时段流量预测对比

    Figure  7.  Comparison of discharge forecasting across representative periods

    图  8  VMD-LSTM不同阶段流量预测残差图

    Figure  8.  Residuals of VMD−LSTM discharge forecasting across different phases

    图  9  不同模型流量模拟值与观测值对比(训练集、验证集、测试集)

    Figure  9.  Comparison of simulated versus observed discharge values for different models( training sets, validation sets, and testing sets)

    图  10  不同模拟期典型丰水期、枯水期对比

    Figure  10.  Comparison of typical high-flow and low-flow periods across different modeling phases

    图  11  LSTM 与 VMD-LSTM 模型的绝对误差与峰值误差对比

    Figure  11.  Comparison of absolute error and peak error between the LSTM and VMD–LSTM models

    表  1  VMD变分模态分解

    Table  1.   Summary of VMD

    模态 贡献率/% 主导周期/d 物理意义
    Mode1 45.91 362.2 年际/季度趋势
    Mode2 14.53 28.7 中期影响
    Mode3 10.69 14.1 中期影响
    Mode4 7.86 8.3 中期影响
    Mode5 6.94 5.1 短期响应
    Mode6 5.15 4.1 短期响应
    Mode7 3.56 3.8 短期响应
    Mode8 2.35 3.2 短期响应
    Mode9 1.67 2.6 降雨—补给事件
    Mode10 1.35 2.2 降雨—补给事件
    下载: 导出CSV

    表  2  LSTM(i)与VMD-LSTM(ii)模型结果对比

    Table  2.   Comparison of the results from the LSTM (i) and VMD-LSTM (ii) models

    LSTM VMD-LSTM
    训练期 (i) 验证期 (i) 测试期(i) 训练期(ii) 验证期(ii) 测试期(ii)
    RMSE 1.458 1.024 1.482 0.339 0.357 0.524
    MAE 0.565 0.425 0.515 0.189 0.181 0.267
    NSE 0.532 0.512 0.606 0.975 0.941 0.951
    KGE 0.616 0.653 0.603 0.978 0.968 0.962
    峰值_RMSE (5%) 5.709 3.904 6.208 0.723 1.032 1.542
    下载: 导出CSV
  • [1] 王晋丽, 陈 喜, 张志才, 康建荣, 胡晋山. 基于MODFLOW的离散裂隙网络渗流分析[J]. 中国岩溶, 2025, 44(1): 1-14. doi: 10.11932/karst2024y043

    WANG Jinli, CHEN Xi, ZHANG Zhicai, KANG Jianrong, HU Jinshan. MODFLOW-based analysis on seepage in discrete fissure networks[J]. Carsologica Sinica, 2025, 44(1): 1-14. doi: 10.11932/karst2024y043
    [2] Hartmann A, Goldscheider N, Wagener T, Lange J, Weiller W. Karst water resources in a changing world: Review of hydrological modeling approaches[J]. Reviews of Geophysics, 2014, 52(3): 218-242. doi: 10.1002/2013RG000443
    [3] 赵良杰, 王莹, 周妍, 曹建文, 杨杨, 王喆. 基于 SWAT 模型的珠江流域地下水资源评价[J]. 地球科学, 2024, 49(5): 1876-1890. doi: 10.3799/dqkx.2022.004

    ZHAO Liangjie, WANG Ying, ZHOU Yan, CAO Jianwen, YANG Yang, WANG Zhe. Groundwater resources evaluation in the Pearl River basin based on SWAT model[J]. Earth Science, 2024, 49(5): 1876-1890. doi: 10.3799/dqkx.2022.004
    [4] 杨丽, 杨广斌, 李亦秋, 李蔓. 修正SWAT模型在喀斯特小流域的径流模拟研究: 以羊鸡冲小流域为例[J]. 中国岩溶, 2024, 43(2): 291-301.

    YANG Li, YANG Guangbin, LI Yiqiu, LI Man. Runoff simulation of modified SWAT model in karst watershed: A case study of Yangjichong sub-watershed[J]. Carsologica Sinica, 2024, 43(2): 291-301.
    [5] 解子轩, 江峰, 王若帆, 吉勤克补子, 史浙明, 赵良杰. 基于GMS的岩溶地下河水流与溶质运移过程模拟研究[J]. 中国岩溶, 2025, 44(1): 57-69. doi: 10.11932/karst20250104

    XIE Zixuan, JIANG Feng, WANG Ruofan, JIQIN Kebuzi, SHI Zheming, ZHAO Liangjie. Simulation study of groundwater flow and solute transport processes in karst underground rivers based on GMS[J]. Carsologica Sinica, 2025, 44(1): 57-69. doi: 10.11932/karst20250104
    [6] 陈喜, 刘传杰, 胡忠明, 李献昆. 泉域地下水数值模拟及泉流量动态变化预测[J]. 水文地质工程地质, 2006, 33(2): 36-40.

    CHEN Xi, LIU Chuanjie, HU Zhongming, LI Xiankun. Numerical modeling of groundwater in a spring catchment and prediction of variations in the spring discharge[J]. Hydrogeology & Engineering Geology, 2006, 33(2): 36-40.
    [7] Jourde H, Wang X. Advances, challenges and perspective in modelling the functioning of karst systems: A review[J]. Environmental Earth Sciences, 2023, 82(17): 396. doi: 10.1007/s12665-023-11034-7
    [8] Chen Z, Lucianetti G, Hartmann A. Understanding groundwater storage and drainage dynamics of a high mountain catchment with complex geology using a semi-distributed process-based modelling approach[J]. Journal of Hydrology, 2023, 625: 130067. doi: 10.1016/j.jhydrol.2023.130067
    [9] 邢立文, 崔宁博. 基于人工神经网络的晋祠泉水位模拟研究[J]. 人民黄河, 2019, 41(12): 63-69. doi: 10.3969/j.issn.1000-1379.2019.12.015

    XING Liwen, CUI Ningbo. Simulation of Jinci Spring water level on ANN Models[J]. Yellow River, 2019, 41(12): 63-69. doi: 10.3969/j.issn.1000-1379.2019.12.015
    [10] Fang L, Shao D. Application of long short-term memory (LSTM) on the prediction of rainfall-runoff in karst area[J]. Frontiers in Physics, 2022, 9: 790687.
    [11] Vu M T, Jardani A, Massei N, Foumier M. Reconstruction of missing groundwater level data by using Long Short-Term Memory (LSTM) deep neural network[J]. Journal of Hydrology, 2021, 597(1): 125776. doi: 10.1016/j.jhydrol.2020.125776
    [12] Kratzert F, Klotz D, Herrnegger M, Sampson A K, Hochreiter S, Nearing G S. Toward improved predictions in ungauged basins: Exploiting the power of machine learning[J]. Water Resources Research, 2019, 55(12): 11344-11354. doi: 10.1029/2019WR026065
    [13] Gholizadeh H, Zhang Y, Frame J, Gu X, Green C T. Long short-term memory models to quantify long-term evolution of streamflow discharge and groundwater depth in Alabama[J]. Science of the Total Environment, 2023, 901: 165884. doi: 10.1016/j.scitotenv.2023.165884
    [14] Le M H, Kim H, Adam S, Do H X, Beling P A, Lakshmi. Streamflow estimation in ungauged regions using machine learning: Quantifying uncertainties in geographic extrapolation[J]. Hydrology and Earth System Sciences, 2022: 1-24.
    [15] 马从文, 张志才, 陈喜, 程勤波, 彭韬, 张林. 基于机器学习的西南岩溶泉流量模拟研究[J]. 中国岩溶, 2024, 43(1): 48-56.

    MA Congwen, ZHANG Zhicai, CHEN Xi, CHENG Qinbo, PENG Tao, ZHANG Lin. Modelling karst spring flow in southwest China based on machine learning [J]. Carsologica Sinica, 2024, 43(1): 48-56.
    [16] Willard J, Jia X, Xu S, Steinbach M, Kumar V. Integrating scientific knowledge with machine learning for engineering and environmental systems[J]. ACM Computing Surveys, 2022, 55(4): 1-37.
    [17] 温忠辉, 任化准, 束龙仓, 王恩, 柯婷婷, 陈荣波. 岩溶地下河日流量预测的小样本非线性时间序列模型[J]. 吉林大学学报 (地球科学版), 2011, 41(2): 455-458.

    WEN Zhonghui, REN huazhun, SU Longcang, WANG En, KE Tingting, CHEN Rongbo. Daily discharge forecast of karst underground river on non-linear time series model of a small sample[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(2): 455-458.
    [18] 郝永红, 黄登宇, 张文忠, 王学萌. 山西神头泉流量的灰色预测模型研究[J]. 水利学报, 2004, 35(2): 111-114.

    HAO Yonghong, HUANG Dengyu, ZHANG Wenzhong, WANG Xuemeng. Gray prediction model for forecasting spring discharge [J]. Shuili Xuebao, 2004, 35(2): 111-114.
    [19] Renard B, Kavetski D, Leblois E, Thyer M, Kuczera G, Franks S W. Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation[J]. Water Resources Research, 2011, 47(11): 11516.
    [20] Zhou R, Wang Q, Jin A, Shi W, Liu S. Interpretable multi-step hybrid deep learning model for karst spring discharge prediction: Integrating temporal fusion transformers with ensemble empirical mode decomposition[J]. Journal of Hydrology, 2024, 645: 132235.
    [21] An L, Hao Y, Yeh. Simulation of karst spring discharge using a combination of singular spectrum analysis and ensemble empirical mode decomposition with LSTM modeling[J]. Environmental Earth Sciences, 2020, 79: 353. doi: 10.1007/s12665-020-09096-1
    [22] Zhang S, Zhao Z, Wu J, Jin Y, Jeng D S, Li S, Li G, Ding D. Solving the temporal lags in local significant wave height prediction with a new VMD-LSTM model[J]. Ocean Engineering, 2024, 313: 119385.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  385
  • HTML浏览量:  269
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-10
  • 网络出版日期:  2026-01-13
  • 刊出日期:  2025-10-25

目录

    /

    返回文章
    返回