• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于频域电磁法反演喀斯特表层土-岩结构研究

程凭 程勤波 陈喜 刘金涛 张志才 高满

程 凭,程勤波,陈 喜,等. 基于频域电磁法反演喀斯特表层土-岩结构研究[J]. 中国岩溶,2022,41(5):675-683 doi: 10.11932/karst20220501
引用本文: 程 凭,程勤波,陈 喜,等. 基于频域电磁法反演喀斯特表层土-岩结构研究[J]. 中国岩溶,2022,41(5):675-683 doi: 10.11932/karst20220501
CHENG Ping, CHENG Qinbo, CHEN Xi, LIU Jintao, ZHANG Zhicai, GAO Man. Exploration of superficial soil-rock structure for karst area based on frequency domain electromagnetic method[J]. CARSOLOGICA SINICA, 2022, 41(5): 675-683. doi: 10.11932/karst20220501
Citation: CHENG Ping, CHENG Qinbo, CHEN Xi, LIU Jintao, ZHANG Zhicai, GAO Man. Exploration of superficial soil-rock structure for karst area based on frequency domain electromagnetic method[J]. CARSOLOGICA SINICA, 2022, 41(5): 675-683. doi: 10.11932/karst20220501

基于频域电磁法反演喀斯特表层土-岩结构研究

doi: 10.11932/karst20220501
基金项目: 国家自然科学基金项目(42030506, 42071039)
详细信息
    作者简介:

    程凭(1997-),男,理学硕士,主要研究方向为水文地球物理。E-mail:chengping0221@163.com

    通讯作者:

    陈喜(1964-),男,教授,主要研究方向为流域水文模拟、地下水数值计算等。E-mail: xi_chen@tju.edu.cn

  • 中图分类号: P631

Exploration of superficial soil-rock structure for karst area based on frequency domain electromagnetic method

  • 摘要: 喀斯特地区浅表层土壤分布极不均匀,探测土-岩界面和土壤分布对区域水文以及生态环境研究具有重要意义。文章基于麦克斯韦方程组构建了频域电磁法(FDEM)探测的电导率(EC)一维反演模型,实现了喀斯特浅表剖面EC可视化表述。根据设定的理想地层EC数据以及南方喀斯特峰丛洼地两个剖面和出露的三个实测剖面的FDEM实测视电导率,结合高密度电法、剖面实测土-岩界面,检验了反演模型可靠性。结果表明:FDEM法反演结果能较好的描述理想地层EC变化,以及土壤与灰岩、白云岩界面EC分布,进而可辨识土壤厚度分布,但基于反演的EC值判别尺度较小的溶沟(槽)以及泥岩区土-岩界面误差较大。

     

  • 图  1  CMD Explorer频域电磁仪示意图(改自Jadoon et al[12])

    Figure  1.  Diagram of CMD Explorer frequency domain electromagnetic induction instrument (modified from Jadoon et al[12])

    图  2  频域电磁感应仪工作原理图(改自SELEPENG[13]

    Figure  2.  Working principle diagram of frequency domain electromagnetic induction instrument (FDEM) (modified from SELEPENG[13])

    图  3  土壤或岩石分层示意图(改自Deidda et al., 2017[19]

    Figure  3.  Schematic diagram of soil or rock stratification (modified from Deidda et al., 2017[19])

    图  4  地层EC反演(虚线)与设定(实线)分布对比图

    Figure  4.  Comparison of the inversion EC line (dotted line) and the set line (solid line) of the profiles

    图  5  研究断面位置示意图

    Figure  5.  Schematic diagram of the location of the study sections

    图  6  高密度电法(a)与频域电磁法反演结果(b)对比图 (Line 1)

    Figure  6.  Comparison of the electric resistivity distribution measured by ERT (a) and the EC distribution inversed by FDEM at the line 1

    图  7  高密度电法(a)与频域电磁法反演结果(b)对比图(line 2)

    Figure  7.  Comparison of the electric resistivity values measured by ERT (a) and the EC values inversed by FDEM at the section of line 2

    图  8  FDEM反演的视电导率与观测值相关关系

    Figure  8.  Comparison of the measured and the inverted ECa values

    图  9  厚层灰岩剖面(a.实景照片,b.反演的EC,c.探测的ECa)

    Figure  9.  Thick limestone profile (a. real photo, b. inverted EC, c. measured ECa)

    图  10  黄土-白云岩/泥岩互层剖面(a.实景照片,b.反演的EC,c.探测的ECa

    Figure  10.  Loess-Dolomite/Mudstone interbed profile (a. real photo, b. inverted EC, c. detected ECa)

    图  11  黄土-白云岩/泥灰岩剖面(a.实景照片,b.反演的EC,c.探测的ECa

    Figure  11.  Loess-Dolomite/Marl profile (a. real photo, b. inverted EC, c. detected ECa)

    图  12  各剖面反演与实测ECa对比图

    Figure  12.  Comparison of inverted and measured ECa of each profile

    表  1  正演模型模拟与反演ECa结果对比

    Table  1.   Comparison of the simulated and inverted ECa values

    线圈模式 HCP VCP 残差
    线圈距离/m 1.48 2.82 4.49 1.48 2.82 4.49
    a 模拟
    ECa/S·m−1
    0.059 2 0.051 8 0.043 8 0.059 3 0.057 5 0.053 8 0.000 2
    反演
    ECa/S·m−1
    0.058 8 0.051 7 0.0441 0.059 5 0.057 5 0.053 9
    b 模拟
    ECa/S·m−1
    0.064 1 0.055 9 0.048 6 0.071 5 0.065 9 0.060 7 0.000 3
    反演
    ECa/S·m−1
    0.064 1 0.055 8 0.048 7 0.071 5 0.065 8 0.060 7
    c 模拟
    ECa/S·m−1
    0.064 1 0.055 9 0.0486 0.0715 0.065 9 0.060 7 0.000 2
    反演
    ECa/S·m−1
    0.064 1 0.055 8 0.048 7 0.071 5 0.065 8 0.060 7
    d 模拟
    ECa/S·m−1
    0.076 9 0.082 8 0.077 4 0.061 2 0.070 7 0.074 4 0.000 0
    反演
    ECa/S·m−1
    0.076 7 0.083 1 0.077 2 0.061 2 0.070 8 0.074 5
    下载: 导出CSV
  • [1] Ford D, Williams P D. Karst hydrogeology and geomorphology[M]. New York: John Wiley & Sons, 2013.
    [2] 陈喜. 西南喀斯特地区水循环过程及其水文生态效应[M]. 北京: 科学出版社, 2014.

    CHEN Xi. Water cycle processes and hydro-ecological effects in the southwest karst region[M]. Beijing: Science Press, 2014.
    [3] 王甲荣, 陈喜, 张志才, 张润润, 朱彪, 龚轶芳, 刘皓, 袁瞬飞. 喀斯特溶槽岩-土界面优势流及其对土壤水分动态的影响[J]. 中国岩溶, 2019, 38(1):109-116.

    WANG Jiarong, CHEN Xi, ZHANG Zhicai, ZHANG Runrun, ZHU Biao, GONG Yifang, LIU Hao, YUAN Shunfei. Preference flow at rock-soil interface and its influence on soil water dynamics in the karst troughs[J]. Carsologica Sinica, 2019, 38(1):109-116.
    [4] Archie, G. E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the Aime, 1942, 146(1):54-62. doi: 10.2118/942054-G
    [5] Revil A, Cathles L M, Losh S, Nunn J.A Electrical conductivity in shaly sands with geophysical applications[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B10):23925-23936. doi: 10.1029/98JB02125
    [6] Corwin D L , Lesch S M , Shouse P J , Soppe R, Ayars J E. Identifing soil properties that influence cotton yield using soil sampling directed by apparent bulk soil electrical conductivity[J]. Agronomy Journal, 2003, 95(2).
    [7] Zhang Z, Routh P S, Oldenburg D W, Alumbaugh D L, Newman G A. Reconstruction of 1-D conductivity from dual-loop EM data[J]. Geophysics, 2000, 65(2):492-501. doi: 10.1190/1.1444743
    [8] Moghadas D, Jadoon K Z, Mccabe M F. Spatiotemporal monitoring of soil moisture from EMI data using DCT-based Bayesian inference and neural network[J]. Journal of Applied Geophysics, 2019, 169:226-238. doi: 10.1016/j.jappgeo.2019.07.004
    [9] Akramkhanov A , Brus D J, Walvoort D J J. Geostatistical monitoring of soil salinity in Uzbekistan by repeated \\{EMI\\ surveys[J]. Geoderma, 2014, 213: 600-607.
    [10] Cheng Qinbo, Tao Min, Chen Xi, Binley A. Evaluation of electrical resistivity tomography (ERT) for mapping the soil–rock interface in karstic environments[J]. Environmental Earth Sciences, 2019, 78(15):1-14.
    [11] Cheng Qinbo, Chen Xi, Tao Min, Binley A. Characterization of karst structures using quasi-3D electrical resistivity tomography[J]. Environmental Earth Sciences, 2019, 78(9):1-12.
    [12] Jadoon K Z, Moghadas D, Jadoon A, Missimer T M, Al-Mashharawi S K, McCabe M F. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements[J]. Water Resources Research, 2015, 51 (5):3490-3504.
    [13] Selepeng A T. Three Dimensional Numerical Modeling of Loop-Loop Electromagnetic Data at Low Induction Numbers[J]. 2016.
    [14] Santos F. 1-D laterally constrained inversion of EM34 profiling data[J]. Journal of Applied Geophysics, 2004, 56(2):123-134. doi: 10.1016/j.jappgeo.2004.04.005
    [15] Dafflon B, Hubbard S S, Ulrich C, Peterson J E. Electrical Conductivity Imaging of Active Layer and Permafrost in an Arctic Ecosystem, through Advanced Inversion of Electromagnetic Induction Data[J]. Vadose Zone Journal, 2013, 12(4):1742-1751.
    [16] Moghadas D, Jadoon K Z, Mccabe M F. Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data[J]. Advances in Water Resources, 2017, 110:238-248.
    [17] Mclachlan P, Blanchy G, Binley A. EMagPy: open-source standalone software for processing, forward modeling and inversion of electromagnetic induction data[J]. Computers & Geosciences, 2020:104561.
    [18] Wait J. Geo-electromagnetism[M]. Amsterdam: Elsevier, 2012.
    [19] Deidda G P, Diaz De Alba P, Rodriguez G. Identifying the magnetic permeability in multi-frequency EM data inversion[J]. 2017.
    [20] Chalikakis K, Plagnes V, Guerin R, Valois R, Bosch F. Contribution of geophysical methods to karst-system exploration: an overview[J]. Hydrogeology Journal, 2011, 19(6):1169-1180. doi: 10.1007/s10040-011-0746-x
    [21] Loke M H, Chambers J E, Rucker D F, Kuras O, Wilkinson P B. Recent developments in the direct-current geoelectrical imaging method[J]. Journal of Applied Geophysics, 2013, 95(8): 135-156.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1770
  • HTML浏览量:  1067
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回