• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喀斯特地区地球关键带科学与生态水文学发展综述

陈喜 张志才

陈喜,张志才. 喀斯特地区地球关键带科学与生态水文学发展综述[J]. 中国岩溶,2022,41(3):356-364 doi: 10.11932/karst20220303
引用本文: 陈喜,张志才. 喀斯特地区地球关键带科学与生态水文学发展综述[J]. 中国岩溶,2022,41(3):356-364 doi: 10.11932/karst20220303
CHEN Xi, ZHANG Zhicai. An overview on the development of science and ecological hydrology of the earth critical zones in karst area[J]. CARSOLOGICA SINICA, 2022, 41(3): 356-364. doi: 10.11932/karst20220303
Citation: CHEN Xi, ZHANG Zhicai. An overview on the development of science and ecological hydrology of the earth critical zones in karst area[J]. CARSOLOGICA SINICA, 2022, 41(3): 356-364. doi: 10.11932/karst20220303

喀斯特地区地球关键带科学与生态水文学发展综述

doi: 10.11932/karst20220303
基金项目: 国家自然科学基金重点项目(42030506)
详细信息
    作者简介:

    陈喜(1964-),男,教授,博士,从事流域生态水文研究。E-mail:xi_chen@tju.edu.cn

  • 中图分类号: P333;P931.5

An overview on the development of science and ecological hydrology of the earth critical zones in karst area

  • 摘要: 针对我国西南喀斯特地区生态环境演变历史及新的形势下面临的挑战问题,系统地总结了植被退化、人工恢复、自然演替三个阶段植被、水文、土壤和溶蚀等观测实验得出的成果,阐述了喀斯特生态水文模型的发展及存在的问题。以地球关键带科学系统思维和多学科综合研究范式,提出了喀斯特地区大气-植被-土壤-岩石系统结构和组成以及协同演变理念;从多学科交叉、系统观测、模型集成视角,探讨了生态水文与碳、水、钙循环协同演变的研究途径,并以此提出推动喀斯特生态水文学发展的建议,为全球气候变化和绿色发展形势下喀斯特地区生态环境恢复提供科学支撑。

     

  • 图  1  喀斯特土壤-岩石-植被-大气系统(SRPAC)

    Figure  1.  Soil-Rock-Plant-Atmosphere-Continuum

    图  2  喀斯特SRPAC系统演变及其控制要素

    Figure  2.  Evolution of karst SPRAC system and its controllig elements

    图  3  喀斯特地区生态退化向恢复转变环境要素变化及驱动机制

    Figure  3.  Environmental factors changes and driving mechanisms in the transition from ecological degradation to ecological restoration in karst area

  • [1] Ford D C, Williams P W. Karst hydrogeology and geomorphology [M]. Wiley, Chichester, England, 2007.
    [2] 侯文娟, 高江波, 彭韬, 吴绍洪, 戴尔. 结构-功能-生境框架下的西南喀斯特生态系统脆弱性研究进展[J]. 地理科学进展, 2016, 35 (3): 320-330.

    HOU Wenjuan, GAO Jiangbo, PENG Tao, WU Shaohong, DAI Er. Review of ecosystem vulnerability studies in the karst region of Southwest China based ona structure-function-habitat framework[J]. Progress in Geography,2016, 35(3): 320-330.
    [3] 黄晓云, 林德根, 王静爱, 常晟. 气候变化背景下中国南方喀斯特地区NPP时空变化[J]. 林业科学, 2013, 49(5):10-16. doi: 10.11707/j.1001-7488.20130502

    HUANG Xiaoyun, LIN Degen, WANG Jing’ai, CHANG Sheng. Temporal and spatial npp variation in the karst region in South China under the background of climate change[J]. Scientia Silvae Sinicae, 2013, 49(5):10-16. doi: 10.11707/j.1001-7488.20130502
    [4] 李阳兵, 邵景安, 王世杰, 魏朝富. 岩溶生态系统脆弱性研究[J]. 地理科学进展, 2006, 25(5):1-9. doi: 10.3969/j.issn.1007-6301.2006.05.001

    LI Yangbing, SHAO jing’an WANG Shijie, WEI Chaofu. A conceptual analysis of kar st ecosystem fr agility[J]. Progress in Geography, 2006, 25(5):1-9. doi: 10.3969/j.issn.1007-6301.2006.05.001
    [5] FENG Xiaoming, FU Bojie, PIAO Shilong, WANG Shuai, Philippe Ciais, ZENG Zhenzhong, Lü Yihe, ZENG Yuan, LI Yue, JIANG Xiaohui, WU Bingfang. Revegetation in china’s loess plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6(11):1019-1022. doi: 10.1038/nclimate3092
    [6] LIANG Wei, BAI Dan, WANG Feiyu, FU Bojie, YAN Junping, WANG Shuai, YANG Yuting, LONG Di, FENG Minquan. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a budyko hydrological model in china's loess plateau[J]. Water Resources Research, 2015, 51(8):6500-6519. doi: 10.1002/2014WR016589
    [7] Tong X W, Brandt M,Yue Y M, Horion S,Wang K L,Keersmaecker W D,Tian F,Schurgers G,Xiao X M, Luo Y Q. Increased vegetation growth and carbon stock in china karst via ecological engineering[J]. Nature Sustainability, 2018, 1:44-50. doi: 10.1038/s41893-017-0004-x
    [8] NRC, National Research Council. Basic research opportunities in earth sciences [R]. National Academies Press, Washington, DC. 2001.
    [9] Banwart S A, Chorver J, Gaillardet G, et al. Sustaining Earth's Critical Zone Basic Science and Interdisciplinary Solutions for Global Challenges [M]. 2013, United Kingdom, ISBN: 978-0-9576890-0-8.
    [10] Troch Peter A, Lahmers Tim, Meira Antonio, Mukherjee Rajarshi, Pedersen Jonas W, Roy Tirthankar, Valdes-Pineda Rodrigo. Catchment coevolution: A useful framework for improving predictions of hydrological change?[J]. Water Resources Research, 2015, 51(7):4903-4922. doi: 10.1002/2015WR017032
    [11] 袁道先, 章程, 岩溶动力学的理论探索与实践[J]. 地球学报, 2008, 29(3): 355-365

    YUAN Daoxian, ZHANG Cheng. Karst dynamics theory in China and its Practice[J]. Acta Geoscientica Sinica, 2008, 29(3): 355-365
    [12] Kochendorfer J P, Ramirez J A. Ecohydrologic controls on vegetation density and evapotranspiration partitioning across the climatic gradients of the central united states[J]. Hydrology Earth System Sciences, 2008, 14(10):2121-2139.
    [13] 李阳兵, 王世杰, 容丽. 西南岩溶山地石漠化及生态恢复研究展望[J]. 生态学杂志, 2004, 23(6):84-88. doi: 10.3321/j.issn:1000-4890.2004.06.018

    LI Yangbing, WANG Shijie, RONG Li. Prospect of the study on rock desertification and its restoration in southwest Karst mountains[J]. Chinese Journal of Ecology, 2004, 23(6):84-88. doi: 10.3321/j.issn:1000-4890.2004.06.018
    [14] 刘方, 王世杰, 罗海波, 刘元生, 何腾兵, 龙健. 喀斯特石漠化过程中植被演替及其对径流水化学的影响[J]. 土壤学报, 2006, 43(1):26-32. doi: 10.3321/j.issn:0564-3929.2006.01.004

    LIU Fang, WANG Shijie, LUO Haibo, LIU Yuansheng, HE Tengbin, LONG Jian. Vegetation Succession with karst rocky desertification and its impact on water chemistry of runoff[J]. Acta Pedologica Sinica, 2006, 43(1):26-32. doi: 10.3321/j.issn:0564-3929.2006.01.004
    [15] 蒋忠诚, 王瑞江, 裴建国, 何师意. 我国南方表层岩溶带及其对岩溶水的调蓄功能[J]. 中国岩溶, 2001, 20(2):106-110.

    JIANG Zhongcheng, WANG Ruijiang, PEI Jianguo, HE Shiyi. Epikarst zone in south China and its regulation function to karst water[J]. Carsologica Sinica, 2001, 20(2):106-110.
    [16] 王荣, 蔡运龙. 西南喀斯特地区退化生态系统整治模式[J]. 应用生态学报, 2010, 21(4): 1070-1080.

    WANG Rong, CAI Yunlong. Management modes of degraded ecosystem in southwest karst area of China[J].Chinese Journal of Applied Ecology, 2010, 21(4): 1070-1080.
    [17] Sirimarco X, Barral M P, Villarino S H, et al. Water regulation by grasslands: a global meta‐analysis[J]. Ecohydrology, 2018:e1934.
    [18] 王世杰, 李阳兵, 李瑞玲. 喀斯特石漠化的形成背景、演化与治理[J]. 第四纪研究, 2003, 23(6): 657-666.

    WANG Shijie, LI Yangbing, LI Ruiling. Karst rocky desertification: Formation background, evolution and comprehensive taming [J].Quaternary Sciences, 2003, 23(6): 657-666.
    [19] Liu B J, Chen C L, Lian Y Q, Chen J F,Chen X H. Long-term change of wet and dry climatic conditions in the southwest karst area of China[J]. Global & Planetary Change, 2015, 127:1-11.
    [20] 张志才, 陈喜, 王文, 石朋. 贵州降雨变化趋势与极值特征分析[J], 地球与环境, 2007, 35(4): 351-356

    ZHANG Zhicai, CHEN Xi, WANG Wen, SHI Peng. Analysis of rainfall trend and extreme Events in Guizhou [J]. Earth and environment, 2007, 35(4): 351-356.
    [21] Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The Physical Science Basis 4 [R], 15, 2013.
    [22] Arora V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models[J]. Reviews of Geophysics, 2002, 40:3-1-3-26. doi: 10.1029/2001rg000103
    [23] Zhu Z C, Piao S, Myneni R B, Huang M T,Zeng Z Z,Canadell J G,Ciais P,Sitch S,Friedlingstein P,Arneth A,Cao C X,Chen L,Kato E,Koven C,Li Y, Lian X,Liu Y W,Liu R G,Mao J F,Pan Y Z,Peng S S,Penuelas J,Poulter B,Pugh T A M,Stocher B D,Viovy N,Wang X H,Wang Y P,Xiao Z Q ,Yang H,Zaehle S Zeng N. Greening of the earth and its drivers[J]. Nature Climate Change, 2016, 6(8):791-795. doi: 10.1038/nclimate3004
    [24] Christopher R Schwalm, William R L Anderegg, Anna M Michalak, Joshua B Fisher, Franco Biondi, George Koch, Marcy Litvak, Kiona Ogle, John D Shaw, Adam Wolf, Deborah N Huntzinger, Kevin Schaefer, Robert Cook, Yaxing Wei, Yuanyuan Fang, Daniel Hayes, Maoyi Huang, Atul Jain, Hanqin Tian. Global patterns of drought recovery[J]. Nature, 2017, 548(7666):202-205. doi: 10.1038/nature23021
    [25] Doughty C E, Metcalfe D B, Girardin C A J, Amezquita F F, Cabrera D G, Huasco W H, Silva-Espejo Araujo-Murakami A. Araujo-Murakami A. da Costa M C. Drought impact on forest carbon dynamics and fluxes in Amazonia[J]. Nature, 2015, 519(7541):78-82. doi: 10.1038/nature14213
    [26] 陈喜, 张志才, 容丽, 等. 西南喀斯特地区水循环过程及其水文生态效应[M]. 北京: 科学出版社, 2014

    CHEN Xi, ZHANG Zhicai, RONG Li, et al. Water circulation process and its hydrological and ecological effects in karst areas of Southwest China [M]. Beijing: Science Press, 2014.
    [27] 邓艳. 西南典型峰丛洼地岩溶关键带植被-表层岩溶水的耦合过程[D]. 武汉: 中国地质大学, 2018.

    DENG Yan. Coupling process between vegetation and epikarst water in karst critical zone, southwest typical peak-cluster depression area[D].Wuhan: China University of Geosciences, 2018
    [28] RONF Li, CHEN Xi, CHEN Xunhong, WANG Shijie, DU Xuelian. Isotopic analysis of water sources of mountainous plant uptake in a karst plateau of southwest China[J]. Hydrological Processes, 2011, 25(23):3666-3675. doi: 10.1002/hyp.8093
    [29] Nie Y P, Chen H S, Wang K L, Ding Y L. Rooting characteristics of two widely distributed woody plant species growing in different karst habitats of Southwest China[J]. Plant Ecology, 2014, 215(10):1099-1109. doi: 10.1007/s11258-014-0369-0
    [30] 罗东辉, 夏婧, 袁婧薇, 张忠华, 祝介东, 倪健. 我国西南山地喀斯特植被的根系生物量初探[J]. 植物生态学报, 2010, 34(5): 611-618.

    LUO Donghui, XIA Jing, YUAN Jingwei, ZHANG Zhonghua, ZHU Jiedong, NI Jian. Root biomass of karst vegetation in a mountainous area of Southwestern China[J]. Chinese Journal of Plant Ecology, 2010, 34 (5): 611–618.
    [31] 司彬, 姚小华, 任华东, 李生, 何丙辉. 黔中喀斯特植被自然演替过程中物种组成及多样性研究:以贵州省普定县为例[J]. 林业科学研究, 2008, 21(5):81-86.

    SI Bin, YAO Xiaohua, REN Huandong, LI Sheng, HE Binghui. Species composition and diversity in the process of natural succession of karst vegetation in central Guizhou: Case study of Puding country in Guizhou[J]. Forest Research, 2008, 21(5):81-86.
    [32] 杨大文, 雷慧闽, 丛振涛. 流域水文过程与植被相互作用研究现状评述[J].水力学报, 2010, 41(10): 1142-1149.

    YANG Dawen, LEI Huimin, CONG Zhentao. Overview of the research status in interaction between hydrological processes and vegetation in catchment[J]. Journal of Hydraulic Engineering, 2010, 41(10): 1142-1149.
    [33] Worthington S R H. Types of permeability development in limestone aquifers in Britain[C], Geophysical Research Abstracts, 11, EGU 2009.
    [34] Zhang Zhicai, Chen Xi, Ghadouani Anas, Peng Shi. Modelling hydrological processes influenced by soil, rock and vegetation in a small karst basin of Southwest China[J]. Hydrological Processes, 2011, 25:2456-2470. doi: 10.1002/hyp.8022
    [35] Cai Lianbi, Chen Xi, Huang Lichao, Keith Smettem. Runoff change induced by vegetation recovery and climate change over carbonate and non-carbonate areas in the karst region of South-west China[J]. Journal of Hydrology, 2022, 604, 1272:31. doi: 10.1016/j.jhydrol.2021.127231
    [36] 曹建华, 王福星, 黄俊发, 黄基富, 王晶. 桂林地区石灰岩表面生物岩溶溶蚀作用研究[J]. 中国岩溶, 1993, 12(1):11-22.

    CAO Jianhua, WANG Fuxing, HUANG Junfa, HUANG Jifu, WANG Jin. The erosion action of biokarst on limestone in Guilin area[J]. Carsologica Sinica, 1993, 12(1):11-22.
    [37] 覃小群, 蒋忠诚. 表层岩溶带及其水循环的研究进展与发展方向[J]. 中国岩溶, 2005, 24(3):250-254. doi: 10.3969/j.issn.1001-4810.2005.03.015

    QIN Xiaoqun, JIANG Zhongcheng. A Reviewon recent advances and perspective in Epikarst water study[J]. Carsologica Sinica, 2005, 24(3):250-254. doi: 10.3969/j.issn.1001-4810.2005.03.015
    [38] 李玉辉, 梁永宁. 滇中路南石林的发育年代[J]. 中国区域地质, 1998, 17(1):44-51.

    LI Yuhui, LIANG Yongning. The ages of development of the lunanstone forest in central Yunnan[J]. Regional Geologyod China, 1998, 17(1):44-51.
    [39] 袁道先, 蔡桂鸿, 岩溶环境学[M]. 重庆, 重庆科技出版社, 1983, 59-71.
    [40] 喻理飞, 朱守谦, 叶镜中, 魏鲁明, 陈正仁. 退化喀斯特森林自然恢复评价研究[J]. 林业科学, 2000, 36(6):12-19. doi: 10.3321/j.issn:1001-7488.2000.06.002

    YU Lifei, ZHU Shouqian, YE Jingzhong, WEI Luming, CHEN Zhengren. A study on evaluation of natural restoration for degraded karst forest[J]. Scientia Silvae Sinicae, 2000, 36(6):12-19. doi: 10.3321/j.issn:1001-7488.2000.06.002
    [41] Ford D C, Williams P W. Karst Geomorphology and Hydrology[M]. CRC Press, Boca Raton, Fla, 1989.
    [42] Hasenmueller E A, Gu X, Weitzman J N,Adamsc T S.Stinchcomb G E,Eissenstatc D M,Drohan P J,Brantley S L,Kaye J P Weathering of rock to regolith: The activity of deep roots in bedrock fractures[J]. Geoderma, 2017, 300:11-31. doi: 10.1016/j.geoderma.2017.03.020
    [43] 宋林华. 喀斯特地貌研究进展与趋势[J]. 地理科学进展, 2000, 9(3):193-202. doi: 10.3969/j.issn.1007-6301.2000.03.001

    SONG Linhua. Progress and trend of karst geomorphology study[J]. Progress in Geography, 2000, 9(3):193-202. doi: 10.3969/j.issn.1007-6301.2000.03.001
    [44] Van Breemen N, Lundström U, Jongmans A G. Do plant drive podsolization via rockeating mycorrhizal fungi?[J]. Geoderma, 2000, 94:163-171. doi: 10.1016/S0016-7061(99)00050-6
    [45] 樊维. 裂隙岩体植物根劈作用机理研究[D]. 重庆: 重庆交通大学, 2016

    FAN Wei. The mechanism study of rock-broken prodess by root-growth of plant in fractured rock[J]. Chongqing: Chongqing Jiaotong University, 2016.
    [46] Lambers H, Mougel C, Jaillard B, Hinsinger P. Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective[J]. Plant Soil, 2009, 321:83-115. doi: 10.1007/s11104-009-0042-x
    [47] Fleurant C, Tucker G E, Viles H A. Modelling cockpit karst landforms[J]. The Geological Society, London, Special Publications, Geological Society of London, 2008, 296: 47-62.
    [48] Detwiler R L, Rajaram H. Predicting dissolution patterns in variable aperture fractures: Evaluation of an enhanced depth-averaged computational model[J]. Water Resources Research, 2007, 43(4):1-14.
    [49] 刘再华, Dreybrodt W. DBL理论模型及方解石溶解、沉积速率预报[J]. 中国岩溶, 1998, 17(1):1-7.

    LIU Zaihua, W. Dreybrodt. The DBL model and prediction of calcitedissolution/precipitation rates[J]. Carsologica Sinica, 1998, 17(1):1-7.
    [50] Wang L, Cardenas M B. Linear permeability evolution of expanding conduits due to feedback between flow and fast phase change[J]. Geophysical Research Letters, 2017, 44(9): 4116-4123.
    [51] SUN Liwei, NIU Jie, Hu B X, WU Chuanhao, DAI Heng. An efficient approximation of non-Fickian transport using a time-fractional transient storage model[J]. Advances in Water Resources, 2020, 135: 103486.
    [52] 毛亮, 于青春, 王敬霞, 李洪辉, 赵帅维, 贾梅兰. 降雨对裂隙型岩溶含水系统演化影响的数值模拟研究[J]. 中国岩溶, 2017, 36(1):42-48. doi: 10.11932/karst20170105

    MAO Liang, YU Qingchun, WANG Jingxia, LI Honghui, ZHAO Shuaiwei, JIA Meilan. Numerical simulation of precipitation impact on fractured karst system evolution[J]. Carsologica Sinica, 2017, 36(1):42-48. doi: 10.11932/karst20170105
    [53] 王云, 于青春, 薛亮. 溶蚀作用下古岩溶盆地系统中介质场演化模拟[J]. 现代地质, 2010, 24(5):1007-1015. doi: 10.3969/j.issn.1000-8527.2010.05.024

    WANG Yun, YU Qingchun, XUE Liang. Simulation of the media field evolution in palaeo-karst basin system under the dissolution[J]. Geoscience, 2010, 24(5):1007-1015. doi: 10.3969/j.issn.1000-8527.2010.05.024
    [54] Liedl Rudolf, Sauter Martin, Hückinghaus Dirk, Clemens Torsten, Teutsch Georg. Simulation of the development of karst aquifers using a coupled continuum pipe flow model[J]. Water Resources Research, 2003, 39(3):WR001206.
    [55] Bauer S, Liedl R, Sauter M. Modeling the influence of epikarst evolution on karst aquifer genesis: A time- variant recharge boundary condition for joint karst-epikarst development[J]. Water Resources Research, 2005, 41:W09416.
    [56] 吴宏伟. 大气–植被–土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39(1):1-47. doi: 10.11779/CJGE201701001

    WU Hongwei. Atmosphere-plant-soil interactions: theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1):1-47. doi: 10.11779/CJGE201701001
    [57] 陈喜, 宋琪峰, 高满, 孙一萌. 植被-土壤-水文相互作用及生态水文模型参数的动态表述[J]. 北京师范大学学报(自然科学版), 2016, 52: 362-368.

    CHEN Xi, SONG Qifeng, GAO Man, SUN Yimeng. Vegetation-soil-hydrology interaction and expression of parameter variations in ecohydrological models[J]. Journal of Beijing Normal University(natural science),2016, 52: 362-368.
    [58] Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M. Karst water resources in a changing world: Review of hydrological modelling approaches[J]. Reviews of Geophysics, 2015, 52:218-242.
    [59] White W B. Karst hydrology: Recent developments and open questions[J]. Engineering Geology, 2002, 65:85-105. doi: 10.1016/S0013-7952(01)00116-8
    [60] Hartmann A,Weiler M,Wagener T,Lange J,Kralik M,Humer F,Mizyed N,Rimmer A,Barberá J A, Andreo B,Butscher C,Huggenberger P.Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties[J]. Hydrology and Earth System Sciences, 2013, 17(8): 3305-3321.
    [61] Chen Xi, Zhang Zhicai, Soulsby Chris, Cheng Qinbo, Binley Andrew, Jiang Rui, Tao Min. Characterizing the heterogeneity of karst critical zone and its hydrological function: An integrated approach[J]. Hydrological Processes, 2018, 32:2932-2946.
  • 加载中
图(3)
计量
  • 文章访问数:  1380
  • HTML浏览量:  955
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回