留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合岩溶流域碳酸盐岩溶蚀速率与岩溶碳汇——以漓江流域上游为例

孙平安 肖琼 郭永丽 苗迎 王奇岗 章程

孙平安,肖 琼,郭永丽,等.混合岩溶流域碳酸盐岩溶蚀速率与岩溶碳汇:以漓江流域上游为例[J].中国岩溶,2021,40(5):825-834. doi: 10.11932/karst20210509
引用本文: 孙平安,肖 琼,郭永丽,等.混合岩溶流域碳酸盐岩溶蚀速率与岩溶碳汇:以漓江流域上游为例[J].中国岩溶,2021,40(5):825-834. doi: 10.11932/karst20210509
SUN Ping’an,XIAO Qiong,GUO Yongli,et al.Carbonate dissolution rate and karst carbon sink in mixed carbonate and silicate terrain:Take the upper reaches of the Lijiang river basin as an example[J].Carsologica Sinica,2021,40(05):825-834. doi: 10.11932/karst20210509
Citation: SUN Ping’an,XIAO Qiong,GUO Yongli,et al.Carbonate dissolution rate and karst carbon sink in mixed carbonate and silicate terrain:Take the upper reaches of the Lijiang river basin as an example[J].Carsologica Sinica,2021,40(05):825-834. doi: 10.11932/karst20210509

混合岩溶流域碳酸盐岩溶蚀速率与岩溶碳汇——以漓江流域上游为例

doi: 10.11932/karst20210509
基金项目: 

对发展中国家科技援助项目 KY201802009

中国地质调查项目 DD20190022

中国科学院国际合作局国际伙伴计划项目 132852KYSB20170029-01

广西自然科学基金项目 2018GXNSFDA050002

详细信息
    作者简介:

    孙平安(1986—),男,博士,助理研究员,主要从事岩溶环境与碳循环、水文地球化学研究。E-mail: safesun@163.com

  • 中图分类号: P642.25

Carbonate dissolution rate and karst carbon sink in mixed carbonate and silicate terrain:Take the upper reaches of the Lijiang river basin as an example

Funds: 

 KY201802009

 DD20190022

 132852KYSB20170029-01

 2018GXNSFDA050002

  • 摘要: 碳酸盐岩矿物的化学风化速率要显著高于硅酸盐岩矿物,碳酸盐岩和硅酸盐岩混合流域中碳酸盐岩矿物风化对河流水化学的贡献占主导。为研究混合岩溶流域碳酸盐岩风化及岩溶碳汇特征,在漓江流域上游大溶江、小溶江、灵渠3个混合岩溶流域选取了24个点放置标准溶蚀试片并测试对应的土壤理化性质。基于雨季和全年试片溶蚀量和土壤理化特征,分析试片溶蚀量的主控因素及季节差异,定量评估大溶江、小溶江和灵渠流域岩溶碳汇强度。结果表明:空中试片溶蚀量主要受控于降雨,植被会部分遮挡降雨,使试片溶蚀量显著下降,而地表和土下碳酸盐岩溶蚀受降雨和水文过程共同控制;雨季碳酸盐岩溶蚀更快,空中试片溶蚀量主要受控于降雨,而地表和土下试片主要受控于土壤水分的变化;基于溶蚀试片法,大溶江、小溶江和灵渠流域岩溶碳汇强度分别为0.75、0.30和2.92 tC⋅km-2 ⋅yr-1

     

  • 图  1  研究区概况和溶蚀试片点位置示意图

    Figure  1.  Sketch map of the study area and test tablet sites

    图  2  不同地质背景土壤pH(a)、TOC(b)、TIC(c)和TN(d)分布图

    Figure  2.  Distribution of soil pH (a), TOC (b), TIC (c) and TN (d) in different strata

    图  3  不同地质背景土壤粒径分布图

    Figure  3.  Distribution of grain size in different strata

    图  4  不同地质背景土壤体积含水率(a)、温度(b)、CO2浓度(c)和电导率(d)分布图

    Figure  4.  Distribution of soil volumetric moisture content (a), temperature (b), concentration of CO2 (c) and specific conductance (d) in different strata

    图  5  流域南北部(a)和不同覆盖条件(b)试片溶蚀量对比图

    Figure  5.  Comparison of dissolution amounts for north and south (a) and different cover conditions (b)

    图  6  不同地质背景雨季(a)和全年(b)试片溶蚀量分布图

    Figure  6.  Distribution of dissolution amount in rainy season (a) and whole year (b) in different strata

    表  1  试片溶蚀量与土壤参数相关系数表

    Table  1.   Correlation analysis of dissolution amount of test tablets and soil parameters

    试片溶蚀量雨季试片溶蚀量全年试片溶蚀量体积含水率土温CO2浓度电导率
    空中地表土下20 cm土下50 cm空中地表土下20 cm土下50 cm
    雨季空中1
    地表0.55**10.42*-0.44*0.13-0.44*
    土下20 cm0.44*0.86**10.20-0.45*-0.10-0.46*
    土下50 cm0.370.89**0.89**10.32-0.59**-0.06-0.44*
    全年空中0.48*0.51*0.46*0.381
    地表0.350.65**0.49*0.56**0.231-0.39-0.43*-0.37-0.55*
    土下20 cm-0.030.45*0.61**0.65**0.130.48*1-0.02-0.18-0.14-0.22
    土下50 cm-0.170.380.53*0.61**0.030.300.91**10.06-0.32-0.33-0.34

    注:**,P<0.01;*,P<0.05。

    下载: 导出CSV

    表  2  雨季和全年试片溶蚀量

    Table  2.   Dissolution amounts of test tablet in rainy season and whole year

    试片点雨季试片溶蚀量/mgyr-1全年试片溶蚀量/mgyr-1
    空中地表土下20 cm土下50 cm空中地表土下20 cm土下50 cm
    DR01-0268.7±19.7648.6±46.5494.7±52.7901.3±20.157.7±5.4282.1±76.3323.1±26.7501.1±55.5
    DR03-0469.5±4.5293.9±48.2343.9±53.6597.3±80.039.2253.9±48.1273.7±102.3431.0±14.8
    DR05-06117.1±25.9378.3±46.8247.8±3.9604.9±87.5////
    DR07-08101.6±5.4175.6±16.2221.8±46.9157.9±46.2/156.4±24.6104.6±27.5156.7±42.7
    DR09-1077.2±34.5288.1±27.0329.7±41.3380.4±40.450.7131.7±39.9120.9±80.9192.9±2.8
    DR11-1244.3±7.5141.0±47.4174.1±31.4/26.0131.1±22.162.0±21.1/
    DR13-14112.0665.2±25.0836.5±83.71 032.7±38.073.8218.2±51.6257.6±39.0343.6±71.3
    DR15-1654.6±32.2262.6±22.2378.8±13.3429.9±62.381.1160.0±30.1267.4±38.8413.8±78.4
    DR17-1829.8±27.0199.7±52.5347.0±38.0546.9±24.0/74.3±28.9265.1±118.7552.5±78.4
    DR19-2043.5±14.5202.3±47.2340.1±23.6529.8±35.957.9±28.9260.2±97.4315.1±59.9404.7±50.9
    DR21-2256.9±15.6255.3±37.4186.3±59.7329.3±33.557.4±19.5181.3±10.4133.7±47.1307.6±42.3
    DR23-2435.2±15.3217.9±40.9299.6±37.2562.2±53.937.7±27.4149.1±48.6203.2±36.8366.0±13.8
    DR25-2641.3±29.070.6±22.183.6±6.7211.0±98.1////
    DR27-2827.6±11.3447.9439.2±61.8682.2±8.648.2±20.0242.2±31.4297.2±49.1481.9±49.9
    DR29-3049.4±42.0209.5±13.2258.9±6.9415.8±48.234.5130.6±28.6252.1±45.8350.6±6.8
    DR31-3262.2±3.2/212.8±9.0427.4±224.377.9228.1±32.4142.0±10.2216.2±4.6
    DR33-3463.4±16.7311.4±100.6258.7±39.4372.6±56.634.5270.3±50.4153.5±24.6236.4±69.1
    DR35-3641.2±21.8130.0±5.6223.7±41.6359.8±36.531.5123.6±14.9282.3±12.1359.8±7.5
    DR37-3854.1±16.3117.7±44.8327.9±105.3333.5±33.043.1±35.8105.5±15.3300.2±8.0524.8±88.9
    DR39-4041.8±16.7236.9±20.6300.5±30.1433.5±80.627.6±5.5278.4±46.5317.2±48.9412.3±24.5
    DR41-4252.4±6.5393.5±33.1394.2±46.1502.5±52.847.2211.9±58.6267.8±69.4436.2±58.2
    DR43-4429.0±4.024.0±8.313.9±5.718.7±5.239.2±1.236.0±6.08.6±3.09.3±0.3
    DR45-4639.8±23.8126.5±14.1208.5±1.5337.5±12.549.8200.9±34.0198.8±21.0292.2±33.3
    DR47-4822.6±5.550.6±11.789.8±0.4239.8±50.540.730.6±4.6142.4±4.6263.8±33.5

    注:A±B表示平均值±标准差;“/”表示无数据。

    下载: 导出CSV

    表  3  土下试片平均溶蚀量与土壤参数相关系数表

    Table  3.   Correlation analysis of the average dissolution amount of test tablets under soil and soil parameters

    雨季试片溶蚀量全年试片溶蚀量体积含水率土温CO2浓度电导率TOCTICTNpH黏粒粉粒沙粒
    雨季试片溶蚀量1
    全年试片溶蚀量0.68**1
    体积含水率0.050.221
    土温-0.55**-0.260.061
    CO2浓度-0.18-0.26-0.050.251
    电导率-0.51*-0.360.240.71**0.281
    TOC0.22-0.36-0.46*-0.40-0.11-0.321
    TIC-0.46*-0.60**0.120.190.120.36-0.051
    TN0.14-0.30-0.31-0.30-0.14-0.210.89**0.031
    pH-0.28-0.28-0.080.56**0.300.72**-0.070.16-0.131
    黏粒-0.45*-0.230.330.52**0.54**0.41*-0.54**0.02-0.50*0.271
    粉粒-0.48*-0.160.43*0.62**0.340.47*-0.66**0.09-0.57**0.240.91**1
    沙粒0.48*0.18-0.42*-0.61**-0.38-0.47*0.65**-0.080.57**-0.25-0.94**-1.00**1

    注:**,P<0.01;*,P<0.05。

    下载: 导出CSV
  • 袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 1(1): 1-6.
    刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶, 2000, 19(4): 293-300.
    何师意, 康志强, 李清艳, 等. 高分辨率实时监测技术在岩溶碳汇估算中的应用:以板寨地下河监测站为例[J]. 气候变化研究进展, 2011, 7(3): 157-161.
    MeybeckM. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428.
    GaillardetJ, DupréB, LouvatP, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30.
    GombertP. Role of karstic dissolution in global carbon cycle [J]. Global and Planetary Change, 2002, 33(1): 177-184.
    LiuZ, DreybrodtW, WangH. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3-4): 162-172.
    MartinJ B. Carbonate minerals in the global carbon cycle[J]. Chemical Geology, 2017, 449: 58-72.
    LiH, WangS, BaiX, et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink[J]. Science of the Total Environment, 2018, 643: 157-170.
    李朝君, 王世杰, 白晓永, 等. 全球主要河流流域碳酸盐岩风化碳汇评估[J]. 地理学报, 2019, 74(7): 1319-1332.
    李汇文, 王世杰, 白晓永, 等. 中国石灰岩化学风化碳汇时空演变特征分析[J]. 中国科学: 地球科学, 2019, 49(6): 986-1003.
    覃小群, 蒙荣国, 莫日生. 土地覆盖对岩溶地下河碳汇的影响:以广西打狗河流域为例[J]. 中国岩溶, 2011, 30(4): 372-378.
    曾思博, 蒋勇军. 土地利用对岩溶作用碳汇的影响研究综述 [J]. 中国岩溶, 2016, 35(2): 153-163.
    JiangY, YuanD, ZhangC, et al. Impact of land use change on groundwater quality in a typical karst watershed of southwest China[J]. Hydrogeology Journal, 2008, 16(4): 727-735.
    ZhaoM, ZengC, LiuZ, et al. Effect of different land use/land cover on karst hydrogeochemistry: A paired catchment study of Chengqi and Dengzhanhe, Puding, Guizhou, SW China[J]. Journal of Hydrology, 2010, 388(1-2): 121-130.
    章程. 不同土地利用土下溶蚀速率季节性差异及其影响因素:以重庆金佛山为例[J]. 地质论评, 2010, 56(1): 136-140.
    章程. 不同土地利用下的岩溶作用强度及其碳汇效应[J]. 科学通报, 2011, 56(26): 2174-2180.
    王文娟, 蓝芙宁, 蒋忠诚, 等. 湖南大龙洞流域不同岩性不同土地利用类型下碳酸盐岩试片的溶蚀速率[J]. 中国岩溶, 2013, 32(1): 29-33.
    LanF, QinX, JiangZ, et al. Influence of land use/land cover on hydrogeochemical indexes of karst groundwater in the Dagouhe Basin, Southwest China[J]. Clean-Soil,Air,Water, 2015, 43(5): 683-689.
    JacobsonA D, BlumJ D, ChamberlainC P, et al. Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps[J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 29-46.
    BlumJ D, GazisC A, JacobsonA D, et al. Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series[J].Geology, 1998, 26: 411-414.
    孙平安, 于奭, 莫付珍, 等. 不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例[J]. 环境科学, 2016, 37(1): 123-131.
    SunP, HeS, YuS, et al. Dynamics in riverine inorganic and organic carbon based on carbonate weathering coupled with aquatic photosynthesis in a karst catchment, Southwest China [J]. Water Research, 2021, 189: 116658.
    孙平安,李秀存,于奭,等.酸雨溶蚀碳酸盐岩的源汇效应分析:以广西典型岩溶区为例[J]. 中国岩溶, 2017,36(1): 101-108.
    蒋忠诚, 蒋小珍, 雷明堂. 运用GIS和溶蚀试验数据估算中国岩溶区大气CO2的汇[J]. 中国岩溶, 2000,19(3): 212-217.
    刘再华. 大气CO2两个重要的汇[J]. 科学通报, 2000, 45(21): 2348-2351.
    原雅琼, 何师意, 于奭, 等. 柳江流域柳州断面水化学特征及无机碳汇通量分析[J]. 环境科学, 2015, 36(7): 2437-2445.
    YuS, DuW, SunP, et al. Study on the hydrochemistry character and carbon sink in the middle and upper reaches of the Xijiang River basin, China[J]. Environmental Earth Sciences, 2015, 74: 997-1005.
    袁道先, 覃政教, 黄桂强, 等. 西南岩溶石山地区重大地质环境问题及对策研究[M]. 北京: 科技出版社, 2014: 522.
    陈燕丽, 莫建飞, 莫伟华, 等. 近30年广西喀斯特地区石漠化时空演变[J]. 广西科学, 2018, 25(5): 625-631.
    LiuZ, MacphersonG L, GrovesG, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  358
  • HTML浏览量:  338
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 刊出日期:  2021-10-25

目录

    /

    返回文章
    返回