留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶区矿山污染地下水的水生植物修复初步研究

张连凯 覃小群 黄奇波 刘朋雨 单晓静

张连凯, 覃小群, 黄奇波, 刘朋雨, 单晓静. 岩溶区矿山污染地下水的水生植物修复初步研究[J]. 中国岩溶, 2017, 36(5): 743-750. doi: 10.11932/karst2017y47
引用本文: 张连凯, 覃小群, 黄奇波, 刘朋雨, 单晓静. 岩溶区矿山污染地下水的水生植物修复初步研究[J]. 中国岩溶, 2017, 36(5): 743-750. doi: 10.11932/karst2017y47
ZHANG Liankai, QIN Xiaoqun, HUANG Qibo, LIU Pengyu, SHAN Xiaojing. Aquatic plants bioremediation to groundwater contaminated by mines in karst areas[J]. CARSOLOGICA SINICA, 2017, 36(5): 743-750. doi: 10.11932/karst2017y47
Citation: ZHANG Liankai, QIN Xiaoqun, HUANG Qibo, LIU Pengyu, SHAN Xiaojing. Aquatic plants bioremediation to groundwater contaminated by mines in karst areas[J]. CARSOLOGICA SINICA, 2017, 36(5): 743-750. doi: 10.11932/karst2017y47

岩溶区矿山污染地下水的水生植物修复初步研究

doi: 10.11932/karst2017y47
基金项目: 中国地质调查局地质调查项目(DD20160301);国家重点研发计划项目(2017YFC0406104);国家留学基金资助项目(201608455024)

Aquatic plants bioremediation to groundwater contaminated by mines in karst areas

  • 摘要: 选取黑藻(Hydrilla verticillata Royle)和水绵(Spirogyra communis,Hassall)作为研究对象,分析其对某铅锌矿尾矿库重金属废水的富集能力,综述重金属在黑藻和水绵体内的富集机制,探讨了利用黑藻和水绵进行岩溶矿山重金属污染水修复的应用前景。结果表明:黑藻和水绵体内的重金属绝对含量较高,并且植株长势良好,生物量大,说明这两种水生植物对重金属有避性或耐性。分析测试发现,在黑藻和水绵体内,重金属的富集系数较高,其中Pb最大,其后依次是As>Co>Mn>Cu>Cd>Zn>Ni>Cr,富集系数最少的是Hg,水绵体内的富集系数要大于黑藻。对比研究发现,这两类藻类体内的重金属含量和富集系数均高于非岩溶区。黑藻对重金属的富集机制主要有3种,即重金属作用下抗氧化酶活性增强、被动吸收和离子交换作用,而水绵特殊的分子生物结构可能是其吸附重金属的重要机制。黑藻和水绵在南方岩溶区广泛分布,利用黑藻和水绵修复重金属污染的岩溶水具有较好前景。

     

  • [1] Goldscheider N. Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany [J]. Hydrogeology Journal, 2005, 13(4): 555-564.
    [2] 袁道先. 西南岩溶区地下水环境告急 [N]. 科学时报, 2009:2-19.
    [3] 蒋忠诚. 广西岩溶及其生态环境领域近十年来的主要研究进展 [J]. 南方国土资源, 2004(11):19-22.
    [4] 郭维君, 陈学军, 崔晓艳. 广西泗顶铅锌矿区生态恢复与重建研究 [J].中国矿业, 2010, 19(5): 44-46.
    [5] 程峰, 苏夏征, 周洁军, 等. 岩溶区尾矿库渗漏机理与综合防治技术:以环江北山铅锌矿尾矿库为例 [J].中国岩溶, 2017, 36(2): 242-247.
    [6] 刁维萍, 倪吾钟, 倪天华, 等. 水体重金属污染的生态效应与防治对策 [J]. 广东微量元素科学, 2003, 10(3): 1-5.
    [7] 潘义宏, 王宏镔, 谷兆萍, 等. 大型水生植物对重金属的富集与转移 [J]. 生态学报, 2010, 30(23): 6430-6441.
    [8] 崔晓艳. 矿山生态恢复与环境治理研究:以广西融安泗顶铅锌矿区为例 [D]. 桂林:桂林理工大学, 2010.
    [9] 邓琴, 吴迪, 秦樊鑫, 等. 岩溶铅锌矿区土壤重金属污染特征 [J]. 中国岩溶, 2017, 36(2): 248-254.
    [10] 邓敬石, 张宗华, 陈家栋. 浅谈含重金属离子的铅锌矿尾矿废水危害及治理 [J]. 云南冶金, 2002, 31(2): 20-22.
    [11] 江用彬, 季宏兵. 藻类对重金属污染水体的生物修复 [J]. 地理科学进展, 2007, 26(1): 56-67.
    [12] Qi B C, Aldrich C. Biosorption of heavy metals from aqueous solutions with tobacco dust [J]. Bioresource Technology, 2008, 99(13): 5595-5601.
    [13] Baldantoni D, Alfani A, Di T P, et.al. Assessment of macro and microelement accumulation capability of two aquatic plants [J]. Environmental Pollution, 2004, 130(2): 149-156.
    [14] Panich-Pat T, Pokethitiyook P, Kruatrachue M, et al. Removal of Lead from Contaminated Soils by Typha Angustifolia [J]. Water, Air, & Soil Pollution, 2004, 155(1): 159-171.
    [15] 周守标, 王春景, 杨海军, 等. 菰和菖蒲对重金属的胁迫反应及其富集能力 [J]. 生态学报, 2007, 27(1): 281-287.
    [16] 广西壮族自治区水文工程地质队. 区域水文地质调查报告(大新幅)1978:40-59.
    [17] Visoottiviseth P, Francesconi K, Sridokchan W. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land [J]. Environmental Pollution, 2002, 118(3): 453-461.
    [18] Tomsett A B, Thurman D A. Molecular biology of metal tolerances of plants [J]. Plant Cell & Environment, 2010, 11(5): 383-394.
    [19] Wang S L, Liao W B, Yu F Q, et al. Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China [J]. Environmental Geology, 2009, 58(3): 471-476.
    [20] 黄永杰, 刘登义, 王友保, 等. 八种水生植物对重金属富集能力的比较研究 [J]. 生态学杂志, 2006, 25(5): 541-545.
    [21] Yan G, Viraraghavan T. Heavymetal removal from aqueous solution by fungus Mucor rouxii [J]. Water Research, 2003, 37(18): 4486-4496.
    [22] 李杰, 彭福利, 丁栋博, 等. 湘江藻类水华结构特征及对重金属的积累 [J]. 中国科学:生命科学, 2011, 41(8): 669-677.
    [23] Keskinkan O, Goksu M Z, Basibuyuk M, et al. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum) [J]. Bioresource Technology, 2004, 92(2): 197-200.
    [24] 黄灵芝. 黑藻生物吸附剂吸附水体中重金属离子的研究 [D], 长沙:湖南大学, 2011.
    [25] Dixit S, Dhote S, Das R, et al. Heavy Metal Ions Uptake Properties of the Aquatic Weed Hydrilla verticillata: Modeling and Experimental Validation [J]. Hydro Nepal: Journal of Water, Energy and Environment, 2012, 1(8):19-23.
    [26] Lwj A, Dechoretz N, Bayer D, et al. Effect of three formulations on uptake and efficacy of copper in Hydrilla verticillata [J]. Weed Science, 1987, 35(2): 263-269.
    [27] McGrath S, Zhao F, Lombi E. Plant and rhizosphere processes involved in phytoremediation of metalcontaminated soils [J]. Plant and soil, 2001, 232(1): 207-214.
    [28] Baker A J, Whiting S N. In search of the holy grail-a further step in understanding metal hyperaccumulation? [J]. New Phytologist, 2002, 155(1): 1-4.
    [29] Yanqun Z, Yuan L, Schvartz C, et al. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping leadzinc mine area, China [J]. Environment International, 2004, 30(4): 567-576.
    [30] Mattina M I, Lannucci-Berger W, Musante C, et al. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil [J]. Environmental Pollution, 2003, 124(3): 375-378.
    [31] Salt D E, Blaylock M, Kumar N P, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants [J]. Nature biotechnology, 1995, 13(5): 468-474.
    [32] 徐勤松, 施国新, 周耀明, 等. 镉在黑藻叶细胞中的亚显微定位分布及毒害效应分析 [J]. 实验生物学报, 2004, 37(6): 461-468.
    [33] 徐勤松, 施国新, 王学, 等. 镉、铜和锌胁迫下黑藻活性氧的产生及抗氧化酶活性的变化研究 [J]. 水生生物学报, 2006, 30(1): 107-112.
    [34] 黄灵芝, 曾光明, 黄丹莲, 等. 黑藻对含重金属废水中锌离子的吸附性能 [J]. 材料保护, 2009, 42(3): 81-83.
    [35] Gupta V K, Shrivastava A K, Jain N. Biosorption of Chromium(VI) From Aqueous solutions by green algae spirogyra species [J]. Water Research, 2001, 35(17): 4079-4085.
    [36] 山鹰, 张玮, 王丽卿, 等. 六价铬对水绵生长的毒性效应 [J]. 生物学杂志, 2014, 31(1): 24-27.
    [37] Hashim M A, Chu K H. Biosorption of cadmium by brown, green, and red seaweeds [J]. Chemical Engineering Journal, 2004, 97(2-3): 249-255.
    [38] 薛培英, 颜昌宙, 曹英兰, 等. 铜、砷单一及复合污染对黑藻的毒性效应 [J]. 环境科学研究, 2011, 24(9): 1052-1058.
    [39] 施国新, 杜开和, 解凯彬, 等. 汞、镉污染对黑藻叶细胞伤害的超微结构研究 [J]. 植物学报, 2000, 42(4): 373-378.
    [40] 徐勤松, 施国新, 许丙军, 等. Cu、Zn在黑藻叶片中的富集及其毒理学分析 [J]. 水生生物学报, 2007, 31(1): 1-8.
    [41] 李巧云, 曾清如, 廖柏寒, 等. 沉水植物对沉积物中铜锌铅的富集 [J]. 水土保持学报, 2012, 26(5): 177-181.
    [42] Robinson B H, Mills T M, Petit D, et al. Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation [J]. Plant and soil, 2000, 227(1): 301-306.
    [43] Van T K, Wheeler G S, Center T D. Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility [J]. Aquatic Botany, 1999, 62(4): 225-233.
    [44] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms [J]. Earth-Science Reviews, 2010, 99(3): 162-172.
    [45] 胡刚, 王培, 曹建华, 等. 黑藻对岩溶水中DIC的利用及其生长的响应 [J]. 环境科学与技术, 2016, 39(5): 34-37.
    [46] 李兆波, 李伟, 顾舒平, 等. 低浓度CO2对水车前和黑藻光合特性的影响 [J]. 植物科学学报, 2011, 29(2): 226-233.
    [47] 曾振宇, 晏浩, 孙海龙, 等. 云南白水台钙华池出入口水化学和δ13CDIC昼夜变化的影响因素及水生光合作用影响比例的计算 [J]. 中国岩溶, 2016, 35(6): 605-613.
    [48] 李强, 靳振江. 岩溶生物地球化学研究的进展与问题 [J]. 中国岩溶, 2016, 35(4): 349-356.
    [49] 闵海丽, 蔡三娟, 徐勤松, 等. 外源钙对黑藻抗镉胁迫能力的影响 [J]. 生态学报, 2012, 32(1): 256-264.
    [50] 雷国元, 马军. 利用水绵(Spirogyra)深度处理生活污水强化除磷及其机制的探讨[J]. 环境科学, 2009, 30(4): 1066-1072.
    [51] 刘红玉, 曾光明, 鲁双庆, 等. 水绵在测试受污染废水的毒性中的应用及其测试方法: 中国,CN200410047131.1 [P]. 20050907.
  • 加载中
计量
  • 文章访问数:  1133
  • HTML浏览量:  86
  • PDF下载量:  1111
  • 被引次数: 0
出版历程
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回