Surface features’ information extraction from SPOT images with object-oriented classification method
-
摘要: 利用基于面向对象分类方法的eCognition软件,以桂林寨底地区为研究区,对影像中各类地物设置不同的分割参数,即初始分割尺度为30,形状因子为0.1,光谱因子为0.9,紧凑度为0.7,光滑度为0.3,能够比较准确地分割出水体、植被、非植被3类地物。根据建立的类层次结构,继续对植被和非植被2个大类进行细分,结果表明当分别选定分割尺度为80和50时效果较理想。利用eCogni-tion对完成分割的地类进行分类,并结合最后的手动修改,取得了较高的分类精度,即总的分类精度达到96.28%,Kappa系数为0.9523。与传统的分类方法进行对比,面向对象分类方法在高分辨率影像分类工作中具有较大的优势。
-
关键词:
- eCognition /
- 面向对象分类 /
- 类层次结构 /
- 分割 /
- 最大似然法分类
Abstract: With eCognition software of the object-oriented classification method, different segmentation parameters for each surface features in the images is set in the study area of Zhaidi, Guilin. When initial segmentation parameter is 30, shape is 0.1, color is 0.9, compactness is 0.7 and smoothness is 0.3, vegetation, non-vegetation and water body can be parted accurately. Further separation for vegetation and non-vegetation according to the established classification hierarchy, it is concluded that the results close to ideal if the selected segmentation scale is 80 and 50. Classification to the surface features that have been cut by means of eCognition and manually modification has resulted in relatively high accuracy – the general accuracy up to 96.28% and the Kappa coefficient 95.23%. Contrasting with the result by traditional way, the object-oriented classification method is of greater advantage in classifying high-resolution remote sensing data. -
[1] Wang Fangju. Fuzzy supervised classification of remote sensing images[J]. IEEE Trans. On Geosci. and Remote Sensing,1990,28(2):194-201. [2] Benediktssn J A, Swain P H and Ersoy O K. Neural network approaches versus statistical methods in classification of multi source remote sensing data[J].IEEE Trans. On Geosci. and Remote Sensing,1990,28(4):540-552. [3] Ton J, Sticklen J, Jain A. K. Knowledge-Based segmentation of Land-sat images [J].IEEE Transaction on Geoscience and Remote Sensing,1991,29(2):223-231. [4] Lobo A, Chic O, Casterad A. Classification of Mediterranean crops with multi-sensor data: per-pixel versus per-object statistics and image segmentation[J].International Journal of Remote Sensing,1996(17):2358-2400. [5] Hofamnn P. Detection in formal settlements from IKONS image data using methods of object oriented image analysis: an example from Cape Town(South Africa)[C]Remote Sensing of Urban Areas/F Enerkundung in Urbanen Raumen,2001:41-42. [6] 杜凤兰.北京大兴区高分辨率遥感土地利用分类及不确定性研究[D].南京大学,2005,5. [7] 曹宝,秦其明.面向对象方法在SPOT5遥感图像分类中的应用——以北京市海淀区为例[J].地理与地理信息科学,2006,22(2):46-49. [8] QinYu, Peng Gong, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery[J].Photogram metric Engineering and Remote Sensing,2006,72(7):799-811. [9] 丁晓英.eCognition在土地利用项目中的应用[J].测绘与空间地理信息系统,2005,28(6):116-120. [10] 黎新亮,赵书河,芮一康,等.面向对象高分辨遥感影像分类研究[J].遥感应用,2007,6:58-61. [11] 曹雪,柯长青.基于对象级的高分辨率遥感影像分类研究[J].应用技术,2006,5:27-30. -

计量
- 文章访问数: 6395
- HTML浏览量: 799
- PDF下载量: 5258
- 被引次数: 0