Spatial distribution of rural settlement in typical karst terrain in Guizhou Province—A case study on Hongfeng in Qinzhen City, Yachi in Bijie City and Huajiang River between Zhenfeng County and Guanling County
-
摘要: 为探索贵州喀斯特地貌区农村聚落空间分布的特点,选取具有代表性的清镇红枫区(高原盆地地貌区)、毕节鸭池区(高原山地地貌区)以及关岭—贞丰花江区(高原峡谷地貌区)三个典型区域作为研究对象。首先利用区域重心分析的方法,以聚集维数和聚集维数图来分析各研究区的聚落在区域重心上的集聚程度,再进一步通过GeoDa软件,使用Moran I和LocalMoran's I系数及相应散点图分析区域聚落整体和局部的分布情况。分析结果表明,高原山地区和高原盆地区聚落均存在集聚性,且集聚程度存在内部差异,其中高原山地区聚落向人口重心集聚,高原盆地区聚落向住宅重心集聚,集聚和半集聚聚落在高原盆地区最多。由于喀斯特地形复杂,各个研究区内部聚落在水平空间分布上均存在一定差异,依照集聚程度不同喀斯特地貌区农村聚落的分布规律为高原盆地区>高原山地区>高原峡谷区。Abstract: In order to study the features of the spatial distribution of rural settlements in karst terrain, Guizhou Province, three typical landform types study area are select, they are Hongfeng in Qinzhen City(plateau-basin), Yachiin Bijie City(plateau-mountain)and Huajiang river between Zhenfeng County and Guanling County(plateau-cayon).Firstly, the agglomeration degree of settlement in study areas to the centeral area are evaluated by means of regional gravity centre analysis, aggregation dimension and the double logarithm coordinates plotting of spatial distribution. And then, by analyzing the Moran I and Local Moran's I coefficient and the corresponding scatter plot based on GeoDa software, the regional integration and local distribution of settlements are studied. The results indicate that there is clustering features in settlements in the plateau basin and plateau mountain, but their agglomeration degrees are different. It clusters to the population gravity centerin plateau mountain, but to the resident gravity center in plateau basin, and the gathered or half-gathered settlements mostly appear in plateau basin. As the karst terrain is quite complicated in relief, there are differences in horizontal spatial distribution in every study areas. In accordance with the agglomeration degree, the spatial distribution rule of the rural settlement is found as follows (from aggregate to dispersed): the plateau basin>the plateau mountain>the plateau valley.
-
Key words:
- rural settlement /
- spatial distribution /
- karst area /
- Guizhou
-
[1] 陈爱平,安和平,唐丽萍.生态建设与环境保护促进贵州旅游业持续发展[J].资源开发与市场,2007,23(11):1054-1056,1060. [2] 周国富.喀斯特峰丛洼地系统土地利用与人口聚落分布——以贵州为例[J].中国岩溶,1995,13(4):194-198. [3] 熊康宁,杜芳娟,廖婧琳,等.喀斯特文化与建筑生态艺术[M].贵阳:贵州人民出版社,2004. [4] 赵星.贵州少数民族聚落文化研究[J].贵州民族研究,2010,31(3):66-70. [5] 廉晓梅.我国人口重心、就业重心与经济重心空间演变轨迹分析[J].人口学刊,2007,(3):23-28. [6] 秦振霞,李含琳,苏朝阳.河南省1987-2006年人口重心与经济重心的空间演变及对比分析[J].农业现代化研究,2009,30(1):16-19. [7] 许月卿,李双成.我国人口与社会经济重心的动态演变[J].人文地理,2005,(1):117-120. [8] 王良健,周克刚,许抄军,等.基于分形理论的长株潭城市群空间结构特征研究[J].地理与地理信息科学,2005,21(6):74-76,99. [9] 许志晖,戴学军,庄大昌,等.南京市旅游景区景点系统空间结构分形研究[J].地理研究,2007,(01):132-140. [10] 刘继生,陈彦光.城镇体系空间结构的分形维数及其测算方法[J].地理研究,1999,18(2):171-172. [11] 陈涛.城镇体系随机聚集的分形研究[J].科技通报,1995,11(2):98-10. [12] Cliff A D, Ord J K. Spatial Autocorrelation[M]. London: PointLtd,1973. [13] Anselin Luc, Arthur Getis. Spatial statistical analysis and geographic information systems[J]. The Annals of Regional Science,1992,26(1):19-33. [14] Daniel A Griffith.Spatial Autocorrelation: A Primer, Resource Publications inn Geography[J]. Association of American Geographers,1999,3:82. [15] Getic A, Ord J K. The analysis of spatial association by use odistance statistics [J].Geographical Analysis,1992,24:189-206. [16] Anselin L. Local indicators of spatial association-LISA[J].Geographical Analysis,1995,27(2):93-115. [17] Moran P A. Notes on continuous stochastic phenomena[J]. Biometrika, 1950, 37(1-2):17-23. [18] SAWADA M. Global Spatial Autocorrelation Indices-Moran’s I, Geary’s C and the General Cross-Product Statistic.http://www.lpc.uottawa.ca/publications/Moransi /Moran.htm..2006-05-16. [19] Montesinos I, Masa J L,Sierra-Perez M,et al. Geoda: Conformal Adaptive Antenna of Multiple Planar Arrays for Satellite Communications[C].Ieee Antennas and Propagation Society International Symposium,2008,1-9,1004-1007. [20] Anselin L,Syabri I, Kho Y.GeoDa:Anintroduction to spatial data analysis[J]. Geographical Analysis,2006,38(1):5-22. -

计量
- 文章访问数: 4486
- HTML浏览量: 832
- PDF下载量: 3664
- 被引次数: 0