• 首页
  • 刊物介绍
  • 编委会
  • 过刊浏览
  • 订阅指南
  • 在线投稿
  • 联系我们
贵阳城区大气污染物的时空变化和复合污染特征
    点此下载全文
引用本文:苏志华,韩会庆,陈波.贵阳城区大气污染物的时空变化和复合污染特征[J].中国岩溶,2020,(3):442-452. SU Zhihua,HAN Huiqing,CHEN Bo.Spatial and temporal variation and combined pollution characteristics of atmospheric pollutants in urban Guiyang[J].Carsologica Sinica,2020,(3):442-452.
摘要点击次数: 51
全文下载次数: 34
学科分类:
作者单位
苏志华 贵州财经大学管理科学与工程学院贵阳 550025 
韩会庆 贵州理工学院建筑与城市规划学院贵阳 550003 
陈波 贵州财经大学公共管理学院贵阳 550025 
基金项目:贵州省教育厅青年科技人才成长项目(黔教合KY字[2018]162);国家自然科学基金项目(41964005)
中文摘要:选取贵阳市10个空气质量监测站发布的PM2.5、PM10、SO2、NO2、CO和O3实时浓度数据,通过时间序列分析法和插值法研究贵阳市大气污染物的时空变化和复合污染特征。结果表明:(1)贵阳市2014-2018年主要污染物PM2.5和PM10的年平均浓度逐渐下降,光化学污染物O3年平均浓度有所增加,空气质量逐渐转好,环境治理取得明显效果;(2)2018-2019自然年PM2.5、PM10、NO2和O3在春季污染最严重,SO2和CO在冬季污染最严重,反映出污染源、阶段性燃料燃烧和二次离子生成等因素对不同污染物的影响不同;(3)PM2.5和PM10日变化特征为“午峰晚峰”型,峰值发生的时间因季节而异,主要由不同季节人类作息的起止时间不同所致,O3日变化为单峰型,夜间O3浓度较低,从早晨8:00点开始随着太阳辐射的增大和温度的升高,在15:00-16:00点左右达到峰值;(4)PM2.5的空间分布呈现出部分郊区和工业区较高,市中心居民区较低的特征,指示城市建设向郊区推进。O3浓度呈现出市区低、郊区高的空间分布特征,反映郊区植被覆盖好,释放的天然源VOCs促进了O3生成;(5)主要污染物O3与颗粒物PM2.5和PM10在春季造成的复合污染最为严重,在夏季O3与PM10造成一定程度的复合污染,在秋冬季O3浓度最低,O3与颗粒物不产生复合污染;一天之内同一时刻O3与颗粒物不会产生叠加从而造成复合污染。
中文关键词:贵阳城区  大气污染物  复合污染  时空分布
 
Spatial and temporal variation and combined pollution characteristics of atmospheric pollutants in urban Guiyang
Abstract:Guiyang city,located in southwestern China,is a big data center of southern China.Its special industrial structure raises higher requirements on air quality.In order to reduce the negative impact of air pollution on the social and economic development of Guiyang,it is necessary to study the characteristics of air pollution in this area. In this study, we obtained real time data of PM2.5,PM10,SO2,NO2,CO and O3 concentration from 10 air quality monitoring stations in Guiyang by time series analysis and the interpolation method to study the spatial and temporal changes and combined pollution of atmospheric pollutants.The results show that the annual average concentrations of the main pollutants PM2.5 and PM10 in urban Guiyang decreased gradually from 2014 to 2018,the average concentration of photochemical pollutants O3 increased,the quality of air gradually improved,and environmental treatment achieved good results.The PM2.5,PM10,NO2 and O3 are most polluted in spring,and the SO2 and CO are most polluted in winter in the natural year from 2018 to 2019,which reflect the influences of pollution sources,staged fuel combustion,and secondary ion generation on different pollutants were different.The daily variation of PM2.5 and PM10 was characterized by the "noon peak and evening peak" type.The peak occurrence time varied with seasons due to different day and night lengths in different seasons,and different start and stop times of human life in different seasons.The daily variation of O3 day was single-peak type, and the concentration of O3 was low at night. From 8:00 in the morning,as the solar radiation increased and the temperature rose,it reached a peak around 15:00 to 16:00.The spatial distribution of PM2.5 presented the characteristics of some suburbs and industrial areas were higher, and the downtown residential areas were lower,indicating that urban construction is expanded to the suburbs construction. The spatial distribution of O3 concentration presented characteristics of low in the urban and high in suburb, reflecting the good coverage of suburban vegetation, and the release of natural source VOCs promoting the generation of O3.The major pollutant O3 and particulates PM2.5 and PM10 casued the most serious combined pollution in spring,while O3 and PM10 caused a certain degree of combined pollution in summer,and the concentration of O3 was the lowest in autumn and winter,which will not produce combined pollution with particulate pollutants. At the same moment within a day, the particulates and O3 did not superimpose and cause combined pollution.
keywords:urban Guiyang, atmospheric pollutants, combined pollution, temporal and spatial distribution
查看全文  查看/发表评论  下载PDF阅读器


您是第 4845017 位访问者
版权所有《中国岩溶》编辑部
主管单位:中国地质科学院 主办单位:中国地质科学院岩溶地质研究所 地址:广西桂林七星路50号
邮政编码:541004 电话:0773-5812949 7796657 电子邮件:zgyr@karst.ac.cn

技术支持:北京勤云科技发展有限公司