Significance and carbon sink effects of karst processes in global carbon cycle: Also reply to “Discussion on article ‘Calculation of atmospheric CO2 sink formed in karst processes of karst divided regions in China’ ”
-
摘要: 岩溶作用促进大气二氧化碳汇过程不仅局限于碳酸盐岩地区,而是涉及全球陆地地质岩石地区,因此以前仅考虑岩溶面积计算的岩溶碳汇量偏低,需要以河流流域为单元全面计算全球岩溶碳汇效应。除了产生河流溶解无机碳被带入海洋外,岩溶作用还可通过水体生物吸收形成颗粒有机碳以及在岩溶土壤中固定有机碳等方式形成碳汇,因此,岩溶地质过程固碳形式多样。其中,仅全球水生生物固定岩溶水重碳酸根产生的有机碳近0.5Gt,生态恢复可促进岩溶土壤有机碳固定及岩溶流域碳汇,我国西南石漠化治理工程至少可增加岩溶碳汇2~3亿t,如果重视岩溶增汇技术的应用,全球岩溶碳汇效应将非常显著。所以,岩溶碳汇研究意义重大,岩溶碳汇效应更不可忽略。Abstract: Atmospheric CO2 can be absorbed and dissolved in water among karst processes, not only occurred in the carbonate rock area but also in all other rock areas of the global continent. Therefore, the previous calculation data of the karst carbon cycle based on the carbonate area is less and should be calculated again based on all river basins in the world. Besides the dissolved inorganic carbon of the rivers into oceans, the carbon sink of karst processes can be formed in particulate organic carbon of waters deposited by aquatic vegetation and the karst soil organic carbon etc. many carbon sequestered fashions. Among them, only the particulate organic carbon of waters deposited by aquatic vegetation absorbed from bicarbonate ions can reach about 0.5 Gt. The ecological rehabilitation can promote the organic carbon fixed in karst soils and inorganic carbon sink of water in the basin. As a result, the treatment engineering of the rocky desertification in southwest China at least can raise karst carbon sink 0.2 to 0.3 Gt. If the carbon sequestered technology in karst processes is considered and applied in ecological rehabilitation of the world, the global carbon sink effects should be very evident.
-
Key words:
- global carbon cycle /
- karst progresses /
- atmospheric CO2 sink /
- geological carbon sink
-
[1] Ferris F G, Wiese R G, Fyfe W S. Precipitation of carbonate minerals by micro organisms: implications for silicate weathering and the global carbon dioxide budget[J]. Geimicrobiology journal,1994,10:66-75. [2] Allegre C J, Schneider S H. The evolution of the Earth[J]. Scientific American,1994,(1):23-31. [3] Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle: a test of our knowledge of earth as a system[J]. science, 2000, 290, 291-296. [4] Ford D C, Paul Williams. Karst geomorphology and hydrology[M]. Unwin Hyman LTD. 1989. [5] Yoshimura K, Inokura Y. The geochemical cycle of carbon Dioxide in a carbonate rock area, Akiyoshi-dai plateau, yamaguchi, Southwestern, Janpan[C]// proceedings of 30th International Geological Congress, 1997, 24:114-126. [6] Yuan D. The carbon cycle in karst[J]. Geomorph N F, Suppl.–Bd.1997,108:91-102. [7] 刘再华,Wolfgang Dreybrodt,王海静.一种由全球水循环产生的可能重要的CO2汇[J].科学通报,2007,52(20):2418-2422. [8] Curl R L. Carbon shifted but not sequestered[J]. Science, 2012, 335 (6069):655. [9] Wigley T M L, Schimel D S. The carbon cycle[M]. Cambridge: Cambridge University Press, 2000: 9-10. [10] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Sci Rev, 2010, 99:162-172. [11] 蒋忠诚,覃小群,曹建华,等.中国岩溶作用产生的大气CO2碳汇的分区计算[J].中国岩溶,2011,30(4):363-367. [12] 张之淦.对《中国岩溶作用产生的大气CO2碳汇分区估算》一文的商榷[J].中国岩溶,2012,31(3):339-343. [13] Liu Zai hua, Dreybrodt W, Liu H. Atmospheric CO2 sink: silicate weathering or carbonate weathering? [J]. Applied Geochemistry, 2011. 26:292-294. [14] 覃小群,刘朋雨,黄奇波,等.珠江流域岩石风化作用消耗大气/土壤CO2量的估算[J].地球学报,2013,34(3):276-282. [15] Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chem Geol,1999,159:3-30. [16] Blum J D, Gazis C A, Jacobson A D, et al. Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystal line Series[J]. Geology, 1998, 26:411-414. [17] 刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报,2012,57(2-3):95-102. [18] 吴卫华,郑洪波,杨杰东,等.中国河流流域化学风化和全球碳循环[J].第四纪研究, 2011. 31(3):397-407. [19] Hu H, Boisson-Dernier A, Israelsson Nordstrm M, et al. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movement singuardcells [J]. Nature Cell Biology, 2010, 12: 87-93. [20] 吴沿友,邢德科,刘莹.植物利用碳酸氢根离子的特征分析[J].地球与环境, 2011, 39(2): 273-277. [21] Montety V de, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011,283:31-43. [22] 张强.岩溶地质碳汇的稳定性——以贵州草海地质碳汇为例[J].地球学报, 2012, 33(6): 947-952. [23] Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget[J]. Eco-systems,2007,10:171-184. [24] Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogechem Cycle, 1996,10:23-41. [25] 陶贞,高全洲,姚冠荣.增江流域河流颗粒有机碳的来源、含量变化及输出通量[J].环境科学学报, 2004, 24:789-795. [26] 章程.岩溶作用时间尺度与碳汇稳定性[J].中国岩溶,2011,30(4):368-371. [27] Schwartzman D W, Volk T. Biotic enhancement of weathering and the habitability of earth[J]. Nature,1989,340:457-460. [28] 章程.不同土地利用条件下碳酸盐岩溶蚀速率及其碳汇效应[j].科学通报,2011,56(26):2174-2180. [29] 覃小群,蒙荣国,莫日生.土地覆盖对岩溶地下河碳汇的影响——以广西打狗河为例[J].中国岩溶,2011,30(4):372-378. [30] 陈伟杰,熊康宁,任晓冬,等.岩溶地区石漠化综合治理的固碳增汇效应研究——基于基地监测数据的分析[J].中国岩溶,2010,29(3):229-238. [31] 曹建华,周莉,杨慧,等.桂林毛村岩溶区与碎屑岩林下土壤碳迁移对比及岩溶碳汇研究[J].第四纪研究,2011,31(3):431-436. [32] Suchet P A, Probst J L. A global model for present-day atmospheric / soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2)[J]. Tellus,1995,47B:273-280. [33] Li Wei, Zhou Peng-Peng, Jia Li-Ping, et al. Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi[J]. Mycopathologia, 2009,167:37-46.
点击查看大图
计量
- 文章访问数: 2988
- HTML浏览量: 346
- PDF下载量: 2293
- 被引次数: 0