留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云南石林县域喀斯特洼地空间分布特征及影响因素研究

丁智强 俞筱押 高 璇 李玉辉

丁智强, 俞筱押, 高 璇, 李玉辉. 云南石林县域喀斯特洼地空间分布特征及影响因素研究[J]. 中国岩溶, 2019, 38(3): 325-335.
引用本文: 丁智强, 俞筱押, 高 璇, 李玉辉. 云南石林县域喀斯特洼地空间分布特征及影响因素研究[J]. 中国岩溶, 2019, 38(3): 325-335.
DING Zhiqiang, YU Xiaoya, GAO Xuan, LI Yuhui. Study on spatial distribution characteristics and influencing factors of karst depressions in Shilin county, Yunnan Province[J]. CARSOLOGICA SINICA, 2019, 38(3): 325-335.
Citation: DING Zhiqiang, YU Xiaoya, GAO Xuan, LI Yuhui. Study on spatial distribution characteristics and influencing factors of karst depressions in Shilin county, Yunnan Province[J]. CARSOLOGICA SINICA, 2019, 38(3): 325-335.

云南石林县域喀斯特洼地空间分布特征及影响因素研究

基金项目: 国家自然科学基金项目(41262013,41371514)

Study on spatial distribution characteristics and influencing factors of karst depressions in Shilin county, Yunnan Province

  • 摘要: 为深化洼地空间分布及其影响因素的认识,以云南石林县为例,在ArcGIS中基于DEM提取洼地分布及相关数据,并运用K函数(Ripley’s K)、核密度函数、缓冲区、空间叠加等分析方法,探讨了该区洼地密度分布特征及地理环境对其的影响。结果表明:研究区洼地在8 km尺度上为聚集分布模式,可划分为高密度(>6个?km-2)、中密度(5~6个?km-2)和低密度(<5个?km-2)三个区域。受多种地理环境因素影响,研究区洼地密度在不同海拔段、坡度、起伏度、地层岩石和断层缓冲区上均有差异性表现;同时,岩层节理、断层方向在一定程度上控制了洼地长轴的发育。研究区潜在水文连通性、面积—高程积分值两个指标与洼地密度呈现良好的一致性,但两个指标所反映的喀斯特洼地的地貌学意义还需进一步研究。

     

  • [1] Ford D C, Williams P W. Karst hydrogeology and geomorphology [M]. USA: Hoboken, Wiley & Sons Ltd., 2007.
    [2] Theilenwillige B , Malek H , Charif A , et al. Remote Sensing and GIS Contribution to the Investigation of Karst Landscapes in NW-Morocco[J]. Geosciences, 2014, 4(2):50-72.
    [3] Panno S V, Luman D E. Characterization of cover-collapse sinkhole morphology on a groundwater basin-wide scale using lidar elevation data: A new conceptual model for sinkhole evolution[J]. Geomorphology, 2018, 318(10):1-17.
    [4] Kemmerly P R. Modeling doline populations with logistic growth functions[J]. Earth Surface Processes and Landforms, 2007, 32(4):587-601.
    [5] 朱学稳.桂林岩溶地貌与洞穴研究[M].北京:地质出版社,1988.
    [6] Franci Gabrov?ek, Uro?Stepi?nik. On the formation of collapse dolines: A modelling perspective[J]. Geomorphology, 2011, 134(1-2):23-31.
    [7] Péntek, K, Veress M , Lóczy, D. A morphometric classification of solution dolines[J]. Zeitschrift Fur Geomorphologie, 2007, 51(1):19-30.
    [8] Wall J, Bohnenstiehl D W R, Wegmann K W, et al. Morphometric comparisons between automated and manual karst depression inventories in Apalachicola National Forest, Florida, and Mammoth Cave National Park, Kentucky, USA[J]. Natural Hazards, 2017, 85(1):1-21.
    [9] Bauer C. Analysis of dolines using multiple methods applied to airborne laser scanning data[J]. Geomorphology, 2015, 250(2):78-88.
    [10] Chen Z, Auler A S, Bakalowicz M, et al. The world karst aquifer mapping project: concept, mapping procedure and map of Europe[J]. Hydrogeology Journal, 2017, 25(3):771-785.
    [11] Sauro U, Ferrarese F, Francese R, et al. Doline Fills-Case Study of the Faverghera Plateau (Venetian Pre-Alps, Italy)[J]. Acta Carsologica, 2009, 38(1):51-63.
    [12] Breg Valjavec M, Zorn M, ?arni A. Human-induced land degradation and biodiversity of Classical Karst landscape: On the example of enclosed karst depressions(dolines)[J]. Land Degradation & Development,2018,29(10):3823-3835.
    [13] Siart C, Hecht S, Holzhauer I, et al. Karst depressions as geoarchaeological archives: The palaeoenvironmental reconstruction of Zominthos (Central Crete), based on geophysical prospection, sedimentological investigations and GIS[J]. Quaternary International, 2014, 216(1):75-92.
    [14] ?eru T,?egina E,Gosar A Geomorphological dating of pleistocene conglomerates in central slovenia based on spatial analyses of dolines using LiDAR and ground penetrating radar[J]. Remote Sensing, 2017, 9(12):1213.
    [15] Florea L J. Using Statewide GIS data to identify the coincidence between sinkholes and geologic structure[J]. Journal of Cave & Karst Studies, 2005, 67(2):120-124.
    [16] Faivre S, Reiffsteck P. Spatial distribution of dolines as an indicator of recent deformations on the Velebit mountain range[J]. Géomorphologie Relief Processus Environnement, 1999, 5(2):129-142.
    [17] Gutiérrez F, Parise M, Waele J D, et al. A review on natural and human-induced geohazards and impacts in karst[J]. Earth-Science Reviews, 2014, 138(11):61-88.
    [18] Siska P P, Goovaerts P, Hung I K. Evaluating susceptibility of karst dolines (sinkholes) for collapse in Sango, Tennessee, USA[J]. Progress in Physical Geography,2016,40(4):579-597.
    [19] 石林研究组.中国路南石林喀斯特研究[M].昆明: 云南科技出版社,1997.
    [20] 梁福源, 宋林华, 唐涛. 石林地区土壤性质与喀斯特洼地发育[J]. 地理研究, 2004, 23(3):321-328.
    [21] Faivre S , Pahernik M . Structural influences on the spatial distribution of dolines, Island of Bra? ,Croatia[J]. Zeitschrift Für Geomorphologie, 2007, 51(4):487-503.
    [22] 李玉辉, 冯正清, 俞筱押, 等. 云南石林公园植被重大变化与意义[J]. 中国岩溶, 2005, 24(3):212-219.
    [23] Huang W, Deng C, Day M J. Differentiating tower karst (fenglin) and cockpit karst (fengcong) using DEM contour, slope, and centroid[J]. Environmental Earth Sciences, 2014, 72(2):407-416.
    [24] Liang F, Xu B. Discrimination of tower, cockpit, and non-karst landforms in Guilin, Southern China, based on morphometric characteristics[J].Geomorphology,2014,204(1):42-48.
    [25] Liang F Y, Shi Y R, Abrook G. Mapping cockpit karst in Southern China from ASTER stereo images: DEM validation and accuracy assessment[J]. Carsologica Sinica, 2011, 30(2): 233-242.
    [26] Telbisz T, Dragu?ica H, Nagy B. Doline morphometric analysis and karst morphology of Biokovo Mt (Croatia) based on field observations and digital terrain analysis.[J]. Hrvatski Geografski Glasnik, 2009, 71(2):5-22.
    [27] Ripley, B D . The second-order analysis of stationary point processes[J]. Journal of Applied Probability, 1976, 13(2):255-266.
    [28] Silverman B W. Density estimation for statistics and data analysis[M]. London: Chapman & Hall, 1986:34-74.
    [29] Besag J, Diggle P J. Simple monte carlo tests for spatial pattern[J]. Journal of the Royal Statistical Society, 1977, 26(3):327-333.
    [30] Pringle C M . Hydrologic connectivity and the management of biological reserves: a global perspective[J]. Ecological Applications, 2001, 11(4):981-998.
    [31] Bracken L J , Wainwright J , Ali G A , et al. Concepts of hydrological connectivity: Research approaches, pathways and future agendas[J]. Earth-Science Reviews,2013,119(4):17-34.
    [32] Borselli L , Cassi P , Torri D . Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment[J]. Catena, 2008, 75(3):268-277.
    [33] Tobias H , Marco C , Olivier C , et al. Indices of sediment connectivity: opportunities, challenges and limitations[J]. Earth-Science Reviews, 2018, 187(12):77-108.
    [34] Davis W M. The Geographical Cycle[J]. The geographical Journal, 1899, 14(5): 481-504.
    [35] Strahler A N. Hypsometric(area-altitude) analysis of erosional topography[J]. Bulletin of the Geological Society of America, 1952, 63(1): 1117-1142.
    [36] 李玉辉, 丁智强, 吴晓月. 基于Strahler面积—高程分析的云南石林县域喀斯特地貌演化的量化研究[J]. 地理学报, 2018, 73(5):973-985.
    [37] ?ztürk M Z,?ener M F, ?ener M, et al. Structural controls on distribution of dolines on Mount Anamas (Taurus Mountains, Turkey)[J]. Geomorphology, 2018, 317(9):107-116.
    [38] Markovic J, Boic N, Pahernik M. Spatial distribution and density of dolines in the southeastern Velebit Area[J]. Preliminary Communication, 2016, 21(1):1-28.
    [39] 许基伟, 方世明, 黄荣华. 广西七百弄国家地质公园高峰丛深洼地空间形态特征及其成因研究[J]. 地球学报, 2017, 38(6):961-970.
    [40] Day M . Doline Morphology and Development in Barbados[J]. Annals of the Association of American Geographers, 2015, 73(2):206-219.
    [41] Aguilar Y , Bautista F, Mendoza M E , et al. Density of karst depressions in Yucatán state, Mexico[J]. Journal of Cave and Karst Studies, 2016, 78(2): 51-60.
    [42] Gams I. Doline morphogenetic processes from global and local viewpoints[J]. Acta Carsologica, 2000, 29(2): 123-138.
    [43] Jeanpert J , Genthon P , Maurizot P , et al. Morphology and distribution of dolines on ultramafic rocks from airborne LiDAR data: the case of southern Grande Terre in New Caledonia (SW Pacific)[J]. Earth Surface Processes & Landforms, 2016, 41(13):1854-1868.
    [44] Bo?i? N , Pahernik M, Mihevc A. Geomorphological significance of the palaeodrainage network on a karst plateau: The UnaKorana plateau, Dinaric karst, Croatia[J]. Geomorphology, 2015, 247(10):55-65.
    [45] Daura J , Sanz M , Josep Forn S J , et al. Karst evolution of the Garraf Massif (Barcelona, Spain): doline formation, chronology and archaeo-palaeontological archives[J]. Journal of Cave and Karst Studies, 2014, 76 (5):69-87.
    [46] Sauro U . Landforms of mountainous karst in the middle latitudes: reflections, trends and research problems[J]. Acta Carsologica, 2011, 42 (1): 5-16.
    [47] Day M . The morphology and hydrology of some Jamaican karst depressions[J]. Earth Surface Processes & Landforms, 1976, 1(2):111-129.
    [48] 章程, 谢运球, 姜光辉, 等. 云南路南石林裂隙渗透张量特征[J]. 中国岩溶, 2001, 20(2):97-100.
    [49] Dreybrodt W . Processes in karst systems-physics, chemistry, and geology[M]. Berlin Heidelberg: Springer, 1988: 288.
  • 加载中
计量
  • 文章访问数:  512
  • HTML浏览量:  0
  • PDF下载量:  471
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回

    温馨提示

    《中国岩溶》新采编系统已上线。即日起,新稿件都需采用新采编系统投稿。原采编系统已受理的投稿,审稿流程仍在原采编系统中完成。

    老用户在登录新系统时,如果密码不正确,需要点击下面的找回密码,重置一个新密码,方可登录进系统。

    《中国岩溶》原网站地址:http://zgyr-ov.karst.ac.cn/

    《中国岩溶》编辑部
    2022年4月20日