留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型岩溶泉主要化学成分来源及地球化学敏感性研究

盛 婷 杨平恒 陈 峰 詹兆君 谢国文

盛 婷, 杨平恒, 陈 峰, 詹兆君, 谢国文. 典型岩溶泉主要化学成分来源及地球化学敏感性研究[J]. 中国岩溶, 2018, 37(6): 827-834.
引用本文: 盛 婷, 杨平恒, 陈 峰, 詹兆君, 谢国文. 典型岩溶泉主要化学成分来源及地球化学敏感性研究[J]. 中国岩溶, 2018, 37(6): 827-834.
SHENG Ting, YANG Pingheng, CHEN Feng, ZHAN Zhaojun, XIE Guowen. Study on sources of chemical elements and geochemical susceptibility of a typical karst spring[J]. CARSOLOGICA SINICA, 2018, 37(6): 827-834.
Citation: SHENG Ting, YANG Pingheng, CHEN Feng, ZHAN Zhaojun, XIE Guowen. Study on sources of chemical elements and geochemical susceptibility of a typical karst spring[J]. CARSOLOGICA SINICA, 2018, 37(6): 827-834.

典型岩溶泉主要化学成分来源及地球化学敏感性研究

基金项目: 国家自然科学基金项目( 41103068 ) ;中央高校基本科研业务费专项( XDJK2014A016 )

Study on sources of chemical elements and geochemical susceptibility of a typical karst spring

  • 摘要: 为定量研究岩溶区突出的地球化学敏感性和脆弱性,引入地球化学敏感指数概念,以重庆金佛山水房泉为例,利用2016年1月至12月观测的水化学数据,对水房泉的主要化学成分来源及地球化学敏感性进行研究。结果表明,水房泉水化学类型为Ca-HCO3型和Ca-HCO3·Cl型;岩溶作用与人类活动综合影响下, HCO3- 、Cl- 和Ca2+成为研究区主要阴阳离子,Cl-主要来源于人类旅游活动造成的污染物,SO42- 主要来源于硫酸型酸雨沉降;岩溶作用的季节变化使得HCO3-、Ca2+成为敏感指数最高的阴阳离子;水房泉的宏量元素地球化学敏感性指数在旅游活动影响下,除NO3- 外均有不同程度的升高,其敏感性指数依次为HCO3- > Ca2+ >Na+ > SO42- > Cl- > NO3- =K+ >Mg2+ 。受人类活动影响,岩溶泉水化学表现的更为敏感,减少并净化人类活动污染物、增强游客环保意识等措施对岩溶泉的保护至关重要。

     

  • [1] 袁道先. 中国岩溶学[M]. 北京: 地质出版社, 1993:1-3.
    [2] 杨明德. 论喀斯特环境的脆弱性[J]. 云南地理环境研究, 1990, 2(1): 21-29.
    [3] 袁道先. 对南方岩溶石山地区地下水资源及生态环境地质调查的一些意见[J]. 中国岩溶, 2000, 19(2): 103-108.
    [4] 张海月,杨平恒,王建力,等.城市化对岩溶水系统化学组分演化的影响:以重庆市南山老龙洞地下河为例[J].中国岩溶,2017,36(4):541-549.
    [5] 余琴,杨平恒,于正良,等.不同时间段青木关岩溶地下河水化学变化主导因素分析[J].中国岩溶,2016,35(2):134-143.
    [6] Hamdan I, Margane A,Ptak T, et al. Groundwater vulnerability assessment for the karst aquifer of Tanour and Rasoun springs catchment area(NW-Jordan) using COP and EPIK intrinsic methods[J]. Enviromental Earth Sciences, 2016, 75(23):1474-1486.
    [7] 魏兴萍, 蒲俊兵, 赵纯勇. 基于修正RISKE模型的重庆岩溶地区地下水脆弱性评价[J]. 生态学报, 2014, 34(3):589-596.
    [8] Guo Y L, Zhai Y Z, Wu Q, et al. Proposed APLIE method for groundwater vulnerability assessment in karst-phreatic aquifer, Shangdong Province, China:a case study[J]. Enviromental Earth Sciences, 2016, 75(2):112-125.
    [9] Mimi Z A, Mahmoud N, Abu M M. Modified DRASTIC assessment for intrinsic vulnerability mapping of karst aquifers:a case study[J]. Environmental Earth Sciences, 2012, 66(2):447-456.
    [10] Xu Z X, Hu B X, Ye M. Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks[J]. Hydrology and Earth System Sciences, 2018, 22(1):221-239.
    [11] 付素蓉, 王焰新, 蔡鹤生, 等. 城市地下水污染敏感性分析[J]. 地球科学(地质大学学报), 2000, 25(5):482-486.
    [12] 任坤,师阳,李晓春,等.典型岩溶槽谷区地下水化学特征及地球化学敏感性分析[J].中国岩溶,2014,33(1):15-21.
    [13] Li X, Shu L C, Liu L H, et al. Sensitivity analysis of groundwater level in Jinci Spring Basin(China) based on artificial neural network modeling[J]. Hydrogeology Journal, 2012, 20(4):727-738.
    [14] 罗飞,苏春田,潘晓东,等.典型岩溶丘陵区地下水水化学特征及地球化学敏感性分析:以武冈东部地区为例[J].中国岩溶,2018,37(2):211-217.
    [15] 章程, 袁道先, 李强, 等. 典型表层岩溶动力系统的环境敏感性研究:以广西马山县弄拉峰丛洼地为例[J]. 水文地质工程地质, 2005, 32(1):78-80.
    [16] 杨桂芳, 姚长宏. 我国西南岩溶区地下水敏感性评价模型研究[J]. 自然杂志, 2003, 25(2):83-85.
    [17] 何守阳,朱立军,董志芬,等.典型岩溶地下水系统地球化学敏感性研究[J]. 环境科学,2010,31(5):1176-1182.
    [18] 徐尚全, 杨平恒, 殷建军, 等. 重庆雪玉洞岩溶地下河地球化学敏感性研究[J]. 环境科学, 2013, 34(1):77-83.
    [19] 王鹏,沈立成,伍坤宇,等.重庆金佛山自然保护区内外地下水化学特征研究[J].中国岩溶,2012,31(2):165-172.
    [20] 吴月霞, 蒋勇军, 袁道先, 等. 岩溶泉域降雨径流水文过程的模拟:以重庆金佛山水房泉为例[J]. 水文地质工程地质, 2007, 34(6):41-48.
    [21] 周训. 地下水科学概论(第二版)[M]. 北京:地质出版社, 2014:95-104.
    [22] 蒲俊兵, 袁道先, 蒋勇军, 等. 重庆岩溶地下河水文地球化学特征及环境意义[J]. 水科学进展, 2010, 21(5):628-636.
    [23] 刘从强.生物地球化学过程与地表物质循环:西南喀斯特流域侵蚀与生源要素循环[M]. 北京:科学出版社,2007:265-375.
    [24] 于正良, 袁道先, 杨平恒,等. 基于PCA和在线监测技术研究旅游活动对岩溶地下水水化学的影响[J]. 地球学报, 2016, 37(2):232-240.
    [25] 赵亮, 鲁群岷, 李莉, 等. 重庆万州区大气降水的化学特征[J]. 三峡环境与生态, 2013, 35(2):9-15.
    [26] 周竹渝, 陈德容, 殷捷, 等. 重庆市降水化学特征分析[J]. 重庆环境科学, 2003, 25(11):112-114.
    [27] Wang H, Han G L. Chemical composition of rainwater and anthropogenic influences in Chengdu, Southwest China[J]. Atmospheric Research, 2011, 99(2):190-196.
    [28] Larssen T, Lydersen E,Tang D G, et al.Acid rain in China[J].Environmental Science & Technology,2006,40(2):418-425.
    [29] Yang R, Liu Z H, Zeng C, et al. Response of epikarst hydrochemical changes to soil CO2 and weather conditions at Chenqi,Puding,SW China[J].Journal of Hydrology,2012,468:151-158.
    [30] 查小森. 不同降雨条件下典型亚高山表层岩溶泉水化学特征及其碳汇效应研究:以重庆金佛山水房泉流域为例[D]. 重庆:西南大学, 2015:13-25.
    [31] 李营刚. 岩溶地下水质动态变化和影响因素研究:以重庆金佛山水房泉为例[D]. 重庆:西南大学, 2009:10-20.
    [32] 罗健, 蒋勇军, 胡毅军, 等. 亚高山表层岩溶泉域土壤溶蚀速率季节变化及碳汇量估算:以重庆金佛山水房泉流域为例[J]. 中国岩溶,2011,30(4):443-448.
    [33] 王冬银, 章程, 谢世友, 等. 山区岩溶作用对土地利用方式的响应:以金佛山碧潭泉和水房泉两区岩溶系统为例[J]. 地学前缘, 2007, 14(4):222-230.
    [34] Kim H S, Park S R. Hydrogeochemical characteristics of groundwater highly polluted with nitrate in an agricultural area of Hongseong, Korea[J]. Water, 2016, 8(8):345-363.
    [35] Matson P A, Vitousek P M. Ecosystems approach to a global nitrous-oxide budget[J]. Bioscience, 1990, 40(9):667-671.
    [36] Wu Y X, Jiang Y J, Yuan D X, et al. Modeling hydrological responses of karst spring to storm events:example of the Shuifang spring (Jinfo Mt., Chongqing, China)[J]. Environmental Geology, 2008, 55(7):1545-1553.
    [37] 高彦芳, 沈立成, 杨平恒. δ15N示踪检测重庆金佛山地下水的氮污染源[J]. 人民长江, 2008, 39(11):43-45.
    [38] 杨平恒, 章程, 高彦芳, 等. 垂直地带性岩溶生态环境特征初探:以金佛山国家自然保护区为例[J]. 地质与资源, 2007, 16(2):124-129.
    [39] 王家玲. 环境微生物学(第二版)[M]. 北京:高等教育出版社, 2004:112-130.
  • 加载中
计量
  • 文章访问数:  1254
  • HTML浏览量:  252
  • PDF下载量:  756
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回