留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川盆地西南部中二叠统白云岩成因分析——来自锶同位素、稀土元素证据

冯 轲 徐胜林 陈洪德 董翼昕

冯 轲, 徐胜林, 陈洪德, 董翼昕. 四川盆地西南部中二叠统白云岩成因分析——来自锶同位素、稀土元素证据[J]. 中国岩溶, 2018, 37(5): 659-670.
引用本文: 冯 轲, 徐胜林, 陈洪德, 董翼昕. 四川盆地西南部中二叠统白云岩成因分析——来自锶同位素、稀土元素证据[J]. 中国岩溶, 2018, 37(5): 659-670.
FENG Ke, XU Shenglin, CHEN Hongde, DONG Yixin. Genesis of the Middle Permian dolomite in the southwestern Sichuan basin: Evidence from strontium isotope and rare earth elements[J]. CARSOLOGICA SINICA, 2018, 37(5): 659-670.
Citation: FENG Ke, XU Shenglin, CHEN Hongde, DONG Yixin. Genesis of the Middle Permian dolomite in the southwestern Sichuan basin: Evidence from strontium isotope and rare earth elements[J]. CARSOLOGICA SINICA, 2018, 37(5): 659-670.

四川盆地西南部中二叠统白云岩成因分析——来自锶同位素、稀土元素证据

基金项目: 国家自然科学基金青年基金项目(41602107);成都理工大学中青年骨干教师培养计划项目(JXGG201537、JXGG201538)

Genesis of the Middle Permian dolomite in the southwestern Sichuan basin: Evidence from strontium isotope and rare earth elements

  • 摘要: 白云岩作为优质的油气储层,其成因一直是沉积学研究热点,通过地球化学分析揭示其流体性质是探究白云岩成因的重要途径。本文通过对川西南中二叠统典型剖面和钻井的碳酸盐岩样品进行岩石学、稀土元素和锶同位素特征研究,分析结果显示:(1)其岩石类型主要有石灰岩、泥微晶白云岩、细-中晶白云岩和鞍形白云石4种。(2)研究区白云岩锶同位素比值(平均值0.709 77)明显高于石灰岩和同期海水,接近全球壳源锶同位素平均比值,显示白云岩化流体是热液来源,同时部分泥微晶白云岩显示海水锶同位素特征。(3)研究区碳酸盐岩相较于同期海相沉积物有较高的δCe值(平均值0.86),显示其开放的成岩环境。(4)3种类型的白云岩相较于石灰岩有较高的δEu值(平均值0.99)和显著不同的稀土总量特征,显示研究区白云岩与石灰岩成岩流体性质不同且白云岩受到高温影响。综合分析表明,川西南地区白云岩主要是受构造控制的热液白云岩,部分为被岩浆和热液加热的海水改造的热对流白云岩。

     

  • [1] HSü K J, Siegenthaler C. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J]. Sedimentology,1969,12(1-2): 11-25.
    [2] Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin,1960,44(12):1912-1920.
    [3] Mattes B W, Mountjoy E W. Burial dolomitization of the Upper Devonian Miette Buildup, Jasper National Park, Alberta. Concepts and Medels of Dolomitization[J]. SEPM Special Publication, 1980, 29(1):259-297.
    [4] Badiozamani K. The Dorag dolomitization model-application to the Middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research,1973,43(4): 965-984
    [5] Qing H, Mountjoy E W. Rare earth element geochemistry of dolomites in the Middle Devonian Presqu'ile barrier, Western Canada Sedimentary Basin: implications for fluid-rock ratios during dolomitization[J]. Sedimentology, 1994, 41(4): 787-804.
    [6] Machel H G. Concepts and models of dolomitization: a critical reappraisal[J]. Geological Society, London, Special Publications, 2004, 235(1): 7-63.
    [7] Luczaj J A. Evidence against the Dorag (mixing-zone) model for dolomitization along the Wisconsin arch:A case for hydrothermal diagenesis[J]. AAPG bulletin, 2006, 90(11): 1719-1738.
    [8] 刘树根,黄文明,张长俊,等.四川盆地白云岩成因的研究现状及存在问题[J].岩性油气藏, 2008, 20(2): 6-15.
    [9] 胡文瑄,陈琪,王小林,等.白云岩储层形成演化过程中不同流体作用的稀土元素判别模式[J].石油与天然气地质,2010,31(6):810-818.
    [10] 黄思静. 上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报, 1997,71(1):45-53.
    [11] 陈轩,赵文智,刘银河,等.川西南地区中二叠统热液白云岩特征及勘探思路[J].石油学报,2013,34(3):460-466.
    [12] 韩晓涛,鲍征宇,谢淑云.四川盆地西南中二叠统白云岩的地球化学特征及其成因[J].地球科学, 2016, 41(1): 167-176.
    [13] 魏国齐,杨威,朱永刚,等.川西地区中二叠统栖霞组沉积体系[J].石油与天然气地质, 2010, 31(4): 442-448.
    [14] 胡明毅,魏国齐,胡忠贵,等.四川盆地中二叠统栖霞组层序-岩相古地理[J].古地理学报,2010,12(5):515-526.
    [15] 朱传庆,徐明,袁玉松,等.峨眉山玄武岩喷发在四川盆地的地热学响应[J].科学通报, 2010 (6):474-482.
    [16] He B, Xu Y G, Chung S L, et al. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts[J]. Earth and Planetary Science Letters, 2003,213(3-4): 391-405.
    [17] Yang G, Wang H, Shen H, et al. Characteristics and exploration prospects of Middle Permian reservoirs in the Sichuan Basin[J]. Natural Gas Industry B, 2015, 2(5): 399-405.
    [18] Zhong Y J, Chen A Q, Huang K K, et al. Hydrothermal activity in the fourth member of the Triassic Leikoupo Formation in the Yuanba area, northeast Sichuan, SW China[J]. Geological Journal, 2018:1-12.
    [19] Zhou J, Yao G, Yang G, et al. Lithofacies paleogeography and favorable gas exploration zones of Qixia and Maokou Fms in the Sichuan Basin[J]. Natural Gas Industry B, 2016, 3(3): 226-233.
    [20] 张学丰,胡文瑄,张军涛,等.塔里木盆地下奥陶统白云岩化流体来源的地球化学分析[J].地学前緣, 2008, 15(2): 80-89.
    [21] Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984,48(12): 2469-2482.
    [22] Zhou H, Wang Q, Zhao J, et al. Rare earth elements and yttrium in a stalagmite from Central China and potential paleoclimatic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270(1-2): 128-138.
    [23] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565.
    [24] 江文剑,侯明才,邢凤存,等.川东南地区娄山关群白云岩稀土元素特征及其意义[J].石油与天然气地质,2016,37(4):473-482.
    [25] 刘建清,林家善,冯伟明,等.四川盆地东南缘中上寒武统白云岩稀土元素特征及成因意义—以贵州毕节长树田剖面为例[J].矿物岩石,2014, 34(1):87-94.
    [26] Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.
    [27] 汤好书,陈衍景,武广,等.辽东辽河群大石桥组碳酸盐岩稀土元素地球化学及其对Lomagundi事件的指示[J].岩石学报,2009,25(44):3075-3093.
    [28] Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1-2): 329-340.
    [29] Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333.
    [30] Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect[J]. Geochimica et Cosmochimica Acta, 1999, 63(1): 67-77.
    [31] Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta,1999, 63(5): 627-643.
    [32] 陈琪,胡文瑄,王小林,等.川东北盘龙洞长兴组—飞仙关组白云岩稀土元素配分特征及成因[J]. 石油实验地质, 2011, 33(6): 624-633.
    [33] 王春梅.川西中二叠统栖霞组白云岩形成机制及其与川东北下三叠统飞仙关组对比[D].成都:成都理工大学,2011.
    [34] Palmer M R, Edmond J M. The strontium isotope budget of the modern ocean[J]. Earth and Planetary Science Letters, 1989, 92(1): 11-26.
    [35] Palmer M R, Elderfield H. Sr isotope composition of sea water over the past 75 Ma[J]. Nature, 1985, 314(11): 526-528.
    [36] Burke W H, Denison R E, Hetherington E A, et al. Variation of seawater87Sr/86Sr throughout Phanerozoic time[J]. Geology, 1982, 10(10): 516-519.
    [37] 何冰辉.关于峨眉山大火成岩省一些问题的研究现状[J].地球科学进展, 2016, 31(1): 23-42.
    [38] Hu H , Cawood P A , Hou M , et al. Provenance of Late Permian volcanic ash beds in South China: Implications for the age of Emeishan volcanism and its linkage to climate cooling[J]. Lithos, 2018, 314-315:293-306.
    [39] 胡作维,黄思静,张超,等.碳酸盐白云化作用模式研究进展[J].海洋地质前沿, 2011, 27(10): 1-13.
    [40] Chung S L, Jahn B. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J]. Geology, 1995,23(10): 889-892.
    [41] McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
    [42] 胡忠贵,郑荣才,胡九珍,等.川东-渝北地区黄龙组白云岩储层稀土元素地球化学特征[J].地质学报,2009,24(6):782-790.
    [43] Mazumdar A, Tanaka K, Takahashi T, et al. Characteristics of rare earth element abundances in shallow marine continental platform carbonates of Late Neoproterozoic successions from India[J]. Geochemical Journal, 2003, 37(2): 277-289.
    [44] Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3-4): 338-353.
    [45] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565.
    [46] Kakuwa Y, Matsumoto R. Cerium negative anomaly just before the Permian and Triassic boundary event—the upward expansion of anoxia in the water column. Palaeogeography[J]. Palaeoclimatology, Palaeoecology, 2006, 229(4): 335-344.
    [47] 韩银学,李忠,韩登林,等.塔里木盆地塔北东部下奥陶统基质白云岩的稀土元素特征及其成因[J].岩石学报,2009,25(10):2405-2416.
    [48] 丁振举,姚书振,刘丛强,等.东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪[J].岩石学报,2003,19(4):792-798.
    [49] Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters,1984,67(1):70-78.
    [50] Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105-5113.
    [51] Haas J R, Shock E L, Sassani D C. Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 1995, 59(21): 4329-4350.
    [52] 苏中堂,陈洪德,徐粉燕,等.鄂尔多斯盆地马家沟组白云岩稀土元素地球化学特征[J].吉林大学学报:地球科学版,2012,42(S2):53-61.
  • 加载中
计量
  • 文章访问数:  1219
  • HTML浏览量:  255
  • PDF下载量:  537
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回