留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双同位素示踪定量微藻对碳源利用份额的方法研究

李海涛 吴沿友 赵丽华 张开艳 杭红涛

李海涛, 吴沿友, 赵丽华, 张开艳, 杭红涛. 双同位素示踪定量微藻对碳源利用份额的方法研究[J]. 中国岩溶, 2016, 35(6): 614-618.
引用本文: 李海涛, 吴沿友, 赵丽华, 张开艳, 杭红涛. 双同位素示踪定量微藻对碳源利用份额的方法研究[J]. 中国岩溶, 2016, 35(6): 614-618.
LI Haitao, WU Yanyou, ZHAO Lihua, ZHANG Kaiyan, HANG Hongtao. Application ofbidirectional labeling method to quantifying carbon utilization in microalgae[J]. CARSOLOGICA SINICA, 2016, 35(6): 614-618.
Citation: LI Haitao, WU Yanyou, ZHAO Lihua, ZHANG Kaiyan, HANG Hongtao. Application ofbidirectional labeling method to quantifying carbon utilization in microalgae[J]. CARSOLOGICA SINICA, 2016, 35(6): 614-618.

双同位素示踪定量微藻对碳源利用份额的方法研究

基金项目: 国家自然科学基金项目(40973060);贵州省科学技术基金(黔科合J字[2014]2131号)

Application ofbidirectional labeling method to quantifying carbon utilization in microalgae

  • 摘要: 2015年8月,在人工温室培养环境下,以蛋白核小球藻为实验材料,通过向培养液中添加两种标记δ13C的碳酸氢钠来培养微藻,每天定时监测培养液的无机碳稳定同位素组成和微藻生物量,并测定最终获得的微藻藻体的有机碳稳定同位素组成,运用双同位素示踪模型,通过无机碳稳定同位素和有机碳稳定同位素两种方法,分别成功计算出了微藻利用不同碳源的份额,实验结果分别为:添加5.0 mmol/L碳酸氢钠条件下是0.19、添加10.0 mmol/L条件下是0.37、而添加20.0 mmol/L条件下是0.57。并对这两种算法进行了分析。定量计算微藻对不同无机碳源的利用份额,在岩溶湖泊碳循环研究领域具有重要意义。

     

  • [1] Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing [M] // Climate change, Cambridge, Cambridge University Press, 2007: 131-234.
    [2] 王协琴. 温室效应和温室气体减排分析[J]. 天然气技术, 2008(6): 53-58.
    [3] Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components [J]. Science, 1998, 281: 237-240.
    [4] Carpenter S R, Fisher S G, Grimm N B, et al. Global change and freshwater ecosystems [J]. Annual Review of Ecology and Systematics, 1992, 23: 119-139.
    [5] Wrona F J, Prowse T D, Reist J D, et al. Climate change effects on aquatic biota, ecosystem structure and function [M]. AMBIO: A Journal of the Human Environment, 2006, 35: 359-369.
    [6] Moazami-Goudarzi M, Colman B. Inorganic carbon acquisition in two green marine stichococcus species [J]. Plant, Cell & Environment, 2011, 34: 1465-1472.
    [7] Moulin P, Andría J R, Axelsson L, et al. Different mechanisms of inorganic carbon acquisition in red macroalgae (rhodophyta) revealed by the use of TRIS buffer [J]. Aquatic Botany, 2011, 95: 31-38.
    [8] Ray S, Klenell M, Choo K S, et al. Carbon acquisition mechanisms in chara tomentosa[J]. Aquatic Botany, 2003, 76: 141-154.
    [9] 李海涛,吴沿友,谢腾祥. 微藻利用不同无机碳途径的定量方法[J]. 地球与环境, 2014,42(1):116-121.
    [10] Burkhardt S, Riebesell, U, Zondervan, I. Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton [J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3729-3741.
    [11] Wu Y Y, Xu Y, Li H T, et al. Effect of acetazolamide on stable carbon isotope fractionation in Chlamydomonas reinhardtii and Chlorella vulgaris [J]. Chinese Science Bulletin, 2012.57: 786-789.
    [12] 门玉洁, 胡洪营, 李锋民. 芦苇化感组分对斜生栅藻 Scenedesmus obliquus生长特性的影响[J]. 生态环境,2006,15(5):925-929.
    [13] 郭颖娜,孙卫. 蛋白质含量测定方法的比较[J]. 河北化工, 2008, 31(4): 36-37.
    [14] Atekwana E A, Krishnamurthy R V. Seasonal variations of dissolved inorganic carbon and 13C of surface waters: application of a modified gas evolution technique [J]. Journal of Hydrology, 1998, 205(3): 265-278.
    [15] Chen Z, Cheng H M, Chen X W. Effect of Cl- on photosynthetic bicarbonate uptake in two cyanobacteria Microcystis aeruginosa and Synechocystis PCC6803[J]. Chinese Science Bulletin, 2009, 54: 1197-1203.
  • 加载中
计量
  • 文章访问数:  1040
  • HTML浏览量:  91
  • PDF下载量:  958
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回