岩溶地下河中砷迁移过程及其影响因素分析——以广西南丹县里湖地下河为例
Transport process of arsenic in karst subterranean stream and analysis on the influence factors: A case in Lihu subterranean stream of Nandan county, Guangxi
-
摘要: 以广西南丹县里湖地下河作为研究区,对砷在地下河中的存在形态,迁移过程及其影响因素进行了分析。结果发现,里湖地下河中砷浓度较高且与人类活动密切相关;由于地下河中相对较低的氧化还原环境,使毒性更强的As(III)含量超过As(V),占总无机砷的53 %,增加了该地区发生砷中毒的风险;总As、As(III)和As(V)在地下河中衰减了51 %、36 %、59 %。相关性分析结果表明,沉积物中的Fe、Ca、Mn、有机质及水体中的Ca2+与沉积物中的砷呈现显著正相关关系,有助于水体中砷的吸收;而水体中的Cl-、SO42-、HCO3-与沉积物中的砷呈现负相关关系,不利于砷的吸附,其中HCO3-的抑制作用最为明显。与非岩溶区水体相比,Ca和HCO3-成为影响砷迁移转化的主要因素,因此在岩溶地下河砷污染治理中应考虑岩溶区的水文地质特点,提高砷的污染治理效率。Abstract: The arsenic pollutants generated by the arsenic industries and mining enterprises in karst area flow into subterranean streams and contaminate groundwater easily because of the unique hydrogeological characteristics of karst area, which is a serious threat to the water ecologic security and local residents’ health. In order to elucidate the geochemistry reaction mechanisms of arsenic in karst subterranean streams, the Lihu subterranean stream in Nandan county, Guangxi Province, Southwest China, is selected for the study. The main outcropped lithology in the Lihu subterranean stream catchment is Carboniferous Triassic limestone and the karstification rate is 31.67%. Arsenic species, sediment physical chemical properties and hydro-chemical characteristics of the water are analyzed by inductively coupled plasma mass spectrometer (ICP-MS), X-ray fluorescence spectrometer (XRF) and plasma spectrometer (ICP) respectively. The results show that arsenic concentration in the Lihu subterranean stream is high and it is closely related to human activities. The content of As (III), higher than As (V), occupies 53 % of the total inorganic arsenic in the Lihu subterranean stream due to the low redox environment, which increase the arsenic ecological risk in this region. The contents of total arsenic and As (III) as well as As (V) are attenuated by 51 %, 36 %, 59 % respectively in the underground river. Correlation coefficient analysis calculated with SPSS indicates that sediment Fe, sediment Ca, sediment organic matter, sediment Mn and water Ca2+ are the positive factors that promoting the deposition of arsenic from water. While water Cl-, SO42- and HCO3-, negatively correlated with arsenic in the water, do not facilitate to absorb arsenic. Compared with other water bodies, such as Quaternary groundwater, surface rivers and lakes waters, Ca and HCO3-, turn out to be the important factors for mobilization and transformation of arsenic due to the high calcium and bicarbonate content in karst water. Therefore, karst hydrogeological characteristics should be considered during arsenic contamination treatment in karst groundwater.
-
[1] 肖细元,陈同斌,廖晓勇,等. 中国主要含砷矿产资源的区域分布与砷污染问题[J]. 地理研究, 2008, (01): 201-212. [2] 魏梁鸿,周文琴. 砷矿资源开发与环境治理[J]. 湖南地质, 1992, 11(3): 259-262. [3] Segura R,Arancibia V,Zúniga M C,et al. Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile[J]. Journal of Geochemical Exploration, 2006, 91(1): 71-80. [4] Savage K S,Tingle T N,O’Day P A,et al. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California[J]. Applied Geochemistry, 2000, 15(8): 1219-1244. [5] 翟丽梅,陈同斌,廖晓勇,等. 广西环江铅锌矿尾砂坝坍塌对农田土壤的污染及其特征[J]. 环境科学学报, 2008, 28(6):1206-1211. [6] 李玲,张国平,刘虹,等. 广西大厂矿区土壤-植物系统中 Sb, As 的迁移转化特征[J]. 环境科学学报, 2010, 11(30): 2305-2313. [7] 李先琨,苏宗明. 桂西南不同地层土壤的元素地球化学特征[J]. 广西科学, 2001, 8(4): 301-307. [8] 蹇丽,李慧君,吴琳,等. 广西高砷区采矿业污染河流治理探讨[J]. 环境科学与管理, 2012, 37(4): 108-111. [9] 唐伟,裴建国,殷建军,等. 桂林毛村岩溶地下河二十多来的水质演化趋势研究[J]. 中国岩溶, 2010, (3): 331-336. [10] 王瑞江,姚长宏,蒋忠诚,等. 贵州六盘水石漠化的特点, 成因与防治[J]. 中国岩溶, 2001, 20(3): 211-216. [11] Smedley P L,Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. [12] Ahmed K M,Bhattacharya P,Hasan M A,et al. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview[J]. Applied Geochemistry, 2004, 19(2): 181-200. [13] 郭华明,王焰新,李永敏. 山阴水砷中毒区地下水砷的富集因素分析[J]. 环境科学, 2003, 24(4): 60-67. [14] 袁道先. 中国岩溶动力系统[M].地质出版社, 2002. [15] 郭芳,姜光辉,裴建国,等. 广西主要地下河水质评价及其变化趋势[J]. 中国岩溶, 2002, (03): 44-50,54. [16] 李大通,罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983, 2(2): 147-150. [17] 马振杰. 城市生活废弃物对岩溶地下河的污染研究[D]. 西南大学, 2011. [18] 蹇丽,黄泽春,刘永轩,等. 采矿业污染河流底泥及河漫滩沉积物的粒径组成与砷形态分布特征 [J]. 环境科学学报, 2010, 30(9): 1862-1870. [19] 刘德福. 氧化还原电位、pH值与水体自净能力的关系[J]. 上海环境科学, 1985, (2): 22-23. [20] Huaming Guo,Doris Stüben,Zsolt Berner,et al. Characteristics of arsenic adsorption from aqueous solution: Effect of arsenic species and natural adsorbents[J]. Applied Geochemistry, 2009, 24(4): 657-663. [21] Bruce A Manning,Sabine Goldberg. Arsenic (III) and arsenic (V) adsorption on three California soils[J]. Soil Science, 1997, 162(12): 886-895. [22] 马锡年,李全生,沈万仁,等. 渤海湾表层沉积物中的砷与铁、铝、锰等元素的关系[J]. 海洋与湖沼, 1984, (05): 448-456. [23] Sullivan K A ,Aller R C. Diagenetic cycling of arsenic in Amazon shelf sediments[J]. Geochimica et Cosmochimica Acta, 1996, 60(9): 1465-1477. [24] Goh K H,Lim T T. Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment[J]. Applied Geochemistry, 2005, 20(2): 229-239. [25] 魏显有,王秀敏. 土壤中砷的吸附行为及其形态分布研究[J]. 河北农业大学学报, 1999, 22(3): 28-30. [26] Cui C G ,Liu Z H . Chemical speciation and distribution of arsenic in water, suspended solids and sediment of Xiangjiang River, China[J]. The Science of the Total Environment, 1988, 77(1): 69-82. [27] 陈静生,洪松,邓宝山,等. 中国东部花岗岩, 玄武岩及石灰岩上土壤微量元素含量的纬向分异[J]. 土壤与环境, 1999, 8(3): 161-167. [28] 曹建华,袁道先,裴建国,等.受地质条件制约的中国西南岩溶生态系统[M].地质出版社, 2005. [29] Jekel M R. Arsenic in the Environment, Part I: Cycling and Characterization[J]. In: J.O Nriagu (Ed.), Arsenic in the environment: part 1. Cycling and characterization[M]. John Wiley & Sons: 1994:119-131. [30] Bhumbla D K, Keefer R F. Arsenic mobilization and bioavailability in soils[J]. In: J.O Nriagu (Ed.), Arsenic in the environment: part 1. Cycling and characterization[M].John Wiley & Sons: New York,1994: 51-82. [31] Hossain M Anawar,Junji Akai,Hiroshi Sakugawa. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater[J]. Chemosphere, 2004, 54(6): 753-762. [32] Smith E,Naidu R,Alston A M. Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption[J]. Journal of Environmental Quality, 2002, 31(2): 557-563. [33] Redman A D,Macalady D L,Ahmann D. Natural organic matter affects arsenic speciation and sorption onto hematite[J]. Environmental Science & Technology, 2002, 36(13): 2889-2896. [34] Markus Grafe,Matthew J Eick,Paul R Grossl,et al. Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon[J]. Journal of Environmental Quality, 2002, 31(4): 1115-1123. [35] Dejene A Tessema,Walter Kosmus. Influence of humic and low molecular weight polycarboxylic acids on the release of arsenic from soils[J]. Journal of trace and microprobe techniques, 2001, 19(2): 267-278. [36] Lin H T ,Wang M C,Li G C. Complexation of arsenate with humic substance in water extract of compost[J]. Chemosphere, 2004, 56(11): 1105-1112.
点击查看大图
计量
- 文章访问数: 2255
- HTML浏览量: 317
- PDF下载量: 1664
- 被引次数: 0