留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同方法萃取的溶解无机碳的δ13C值比较分析

孙海龙 刘再华 晏浩 杨睿 曾成 王海静

孙海龙, 刘再华, 晏浩, 杨睿, 曾成, 王海静. 不同方法萃取的溶解无机碳的δ13C值比较分析[J]. 中国岩溶, 2013, 32(1): 117-122.
引用本文: 孙海龙, 刘再华, 晏浩, 杨睿, 曾成, 王海静. 不同方法萃取的溶解无机碳的δ13C值比较分析[J]. 中国岩溶, 2013, 32(1): 117-122.
SUN Hai long, LIU Zai hua, YAN Hao, YANG Rui, ZENG Cheng, WANG Hai jing. Comparison to the δ13C value in dissolved inorganic carbons extracted with different methods[J]. CARSOLOGICA SINICA, 2013, 32(1): 117-122.
Citation: SUN Hai long, LIU Zai hua, YAN Hao, YANG Rui, ZENG Cheng, WANG Hai jing. Comparison to the δ13C value in dissolved inorganic carbons extracted with different methods[J]. CARSOLOGICA SINICA, 2013, 32(1): 117-122.

不同方法萃取的溶解无机碳的δ13C值比较分析

基金项目: 中科院“百人计划”项目、国家自然科学基金项目(40872168、41172232)

Comparison to the δ13C value in dissolved inorganic carbons extracted with different methods

  • 摘要: 为了测定水中溶解无机碳的δ13C值,通常可以利用两种方法对水中的DIC进行萃取:沉淀法和脱气法。但是,一直以来未有研究对这两种方法萃取同一水样DIC的δ13C值之间的差异进行对比分析,尤其是对于具有高CO2分压(pCO2)的水样。本文对两组分别代表深部岩溶系统(高pCO2)和表层岩溶系统(低pCO2)的水样分别同时利用这两种萃取方法萃取其DIC然后测定δ13CDIC值。对比发现利用脱气法萃取物测定得到的δ13CDIC值要显著高于利用沉淀法萃取物测定得到的δ13CDIC值。这是因为在脱气法萃取DIC的过程中,由于水的pCO2高于大气的pCO2,水中富含12C的CO2通过扩散作用逃逸到大气中,从而使δ13CDIC值偏正。这表明利用沉淀法萃取物测定的δ13CDIC值的精度要高于脱气萃取法的精度。对两种DIC萃取方法萃取物测定的δ13CDIC值之间的差与水样和大气之间的CO2分压差进行分析后发现,两者之间具有较好的正相关关系。由于深部岩溶系统的水样具有很高的pCO2,富含12C的CO2向大气逸出的量相对较多,从而导致相应的深部岩溶系统线性关系的斜率和截距均比表层岩溶系统的线性关系的斜率和截距为大。文中所建立的这些线性关系为校正脱气法萃取物测定得到的δ13CDIC值提供了一个可能的经验校正公式。

     

  • [1] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms [J]. Earth- Science Reviews, 2010, 99: 162-172.
    [2] 刘再华, Wolfgang Dreybrodt, 王海静. 一种由全球水循环产生的可能重要的CO2汇[J].科学通报,2007, 52(20):2418-2422.
    [3] Bar Matthews M, Ayalon A, Matthews A,et al. Carbon and oxygen isotope study of the active water carbonate system in a karstic Mediterranean cave: Implications for paleoclimate research in semiarid regions [J]. Geochimica et Cosmochimica Acta, 1996, 60: 337-347.
    [4] 孙海龙, 刘再华, 吕保樱,等. 云南白水台现代钙华 δ13C 的季节和空间变化特征研究 [J]. 地球与环境, 2008, 36(4): 324-329.
    [5] Sun H, Liu Z. Wetdry seasonal and spatial variations in the δ13C and δ18O values of the modern endogenic travertine at Baishuitai, Yunnan, SW China and their paleoclimatic and paleoenvironmental implications[J]. Geochimica et Cosmochimica Acta, 2010, 74: 1016-1029.
    [6] Gleason J D, Friedman I, Hanshaw B B. Extraction of dissolved carbonate species from natural waters for carbon isotope analysis [M]. U.S. Geol. Surv., Prof. Pap., 1969, 650-D: 248-250.
    [7] Hassan A A. Methodologies for extraction of dissolved inorganic carbon for stable carbon isotope studies: Evaluation and alternatives [M]. U.S. Geol. Surv., Water Resour. Invest., 1982, No. 82-6, 51pp.
    [8] Kusakabe M. A simple method for sampling total dissolved carbonate in carbonate rich natural waters and CO2 preparation for δ13C determination [J]. Geochemical Journal, 2001, 35: 459-464.
    [9] Sackett W M, Moore W S. Isotope variations of dissolved inorganic carbon [J]. Chemical Geology, 1966,1:323-328.
    [10] Graber E R, Aharon P. An improved microextraction technique for measuring dissolved inorganic carbon (DIC), δ13C DIC and δ18O H2O from milliliter size water samples [J]. Chemical Geology (Isotope Geoscience Section), 1991,94: 137-144.
    [11] Salata G S, Roelke L A, Cifuentes L A. A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon [J]. Marine Chemistry, 2000, 69: 153-161.
    [12] Capasso G, Favara R, Grassa F, et al. On line technique for preparing and measuring stable carbon isotope of total dissolved inorganic carbon in water sample δ13C DIC) [J]. Annals of Geophysics, 2005, 48: 159-166.
    [13] Bishop P K. Precipitation of dissolved carbonate species from natural water for δ13C analysis A critical appraisal [J]. Chemical Geology (Isotope Geoscience Section), 1990, 80: 251-259.
    [14] Taipale S J, Sonninen E. The influence of preservation method and time on the δ13C value of dissolved inorganic carbon in water samples [J]. Rapid Communications In Mass Spectrometry, 2009, 23:2507-2510.
    [15] Blair N E, Plaia G R, Boehme S E, et al. The remineralization of organic carbon on the North Carolina Continental slope [J]. Deep Sea Ⅱ, 994, 41(4-6):755-766.
    [16] Liu Z, Sun H, Lu B, et al. Wet dry seasonal variations of hydrochemistry and carbonate precipitation rates in a travertine depositing canal at Baishuitai, Yunnan, SW China: Implications for the formation of biannual laminae in travertine and for climatic reconstruction[J]. Chemical Geology, 2010,273: 258-266.
    [17] Wigley T M L. WATSPEC. A computer program for determining the equilibrium of aqueous solutions [J]. British Geomorphological Research Group Technical Bulletin ,1977,20:1-46.
    [18] White W B. Geomorphology and Hydrology of Karst Terrains[M]. NewYork: Oxford University Press, 1988.
    [19] Liu Z,Zhang M, Li Q, You S. Hydrochemical and isotope characteristics of spring water and travertine in the Baishuitai area (SW China) and their meaning for paleoenvironmental reconstruction[J]. Environmental Geology, 2003, 44:698-704.
  • 加载中
计量
  • 文章访问数:  1540
  • HTML浏览量:  111
  • PDF下载量:  1406
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-14
  • 刊出日期:  2013-03-25

目录

    /

    返回文章
    返回