To identify the recharge conditions of karst groundwater in mining area by means of groundwater table and water temperature data: A case in Makeng iron mine, Fujian
-
摘要: 综合利用马坑矿区积累的水位、水温资料,结合前期对矿区水文地质条件的认识,查明了矿区岩溶水在疏干条件下的补给的变化特征。矿区岩溶含水层以石炭系船山组至二叠系栖霞组灰岩为主,大气降水为其主要补给来源。矿区开采过程中由于矿山采石场开采灰岩造成的溶洞出露地表、采空塌陷裂隙、第四系扰动及沟谷堵塞等使大气降水入渗补给量增大;断层破碎带使分布于灰岩含水层上部的二叠系文笔山组泥质砂岩地层具有了良好的含水性及导水性,致使其上部加福组砂岩裂隙水通过小娘坑断层及F3断层等破碎带补给岩溶水;溪马河河水沿河床与F1断层交汇段渗漏补给岩溶水;深部花岗岩低温热水也沿F1及F10断层破碎带进入矿坑。Abstract: On the basis of ascertained hydrogeology conditions, the regime of karst groundwater recharge under dewatering conditions in mining area is found out by means of groundwater table and water temperature data.The aquifer, recharged mainly by precipitation infiltrating water, is composed of the Chuanshan group limestone in the Carboniferous system and the Qixia group limestone in the Permian system. The infiltrating water increased because of the mining activity that exposing some caves, leading fissures by collapse in goaf, disturbing of the Quaternary system sediments and blocking of gullies. Fault fracture zone turns the Wenbishan group argillaceous sandstone of the Permian system into aquifer with good aquosity and transmissibility, which leading to the fissure water in the overlying Jiafu group sandstone recharging the karst groundwater via the Xiaoniangkeng fault and F3 fault. The river water in the Ximahe recharges karst groundwater by seepage along the cross part of the riverbed and the F1 fault. The hypothermia water in the deep granite also entering the pit along the F1 and F10 faults.
-
Key words:
- karst water /
- water table /
- groundwater temperature /
- recharge condition /
- fault fracture zone
-
[1] 刘白宙.焦作矿区地下水位动态变化特征研究[J].工程勘察,2011(7):39-43. [2] 郝爱兵,李亚民,郑跃军,等.利用地下水位监测资料分析水文地质条件的实例研究——新疆奎屯河流域南洼地[J].水文地质工程地质,2008(4):27-30. [3] 吴章锟.对矿区地下水动态观测工作的一些认识[J].水文地质工程地质,1981(3):13-17. [4] 赵玉婷,张征,吕连宏,等.基于地下水多变量空间聚类分析的变异性评价[J].地球科学与环境学报,2009,31(1):79-84. [5] Healy R W, Cook P G. Using ground water levels to estimate recharge[J]. Hydrogeology Journal, 2002(1):91-109. [6] Tedd K M, Misstear B D R, Coxon C. Hydrogeological insights from groundwater level hydrographs in SE Ireland[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2012, 45:19-30. [7] Anderson M P. Heat as a ground water tracer [J]. Ground water, 2005(6):951-968. [8] Silliman S, Robinson R. Identifying Fracture Interconnections Between Boreholes Using Natural Temperature Profiling: I. Conceptual Basis[J]. Groundwater,1989(3):393-402. [9] 张文慧.福建马坑铁矿地下水位动态特征研究[J].金属矿山,2009(3):27-30. [10] 张琦.降雨条件下饱和-非饱和土坡的稳定分析[D].兰州理工大学,2007. [11] 王心义,单智勇.岩溶裂隙型矿区水害防治技术及水资源综合利用[M].北京:煤炭工业出版社,2008. [12] 陈跃升.复杂岩溶矿区降水开采条件下的地表水渗漏定量评价[J].金属矿山,2008(12):42-45. [13] 龙岩地区地方志编纂委员会.龙岩地区志(第二卷)[M].上海:上海人民出版社,1992,10. [14] 熊亮萍,胡圣标,汪缉安,等.福建省西部大地热流值[J].地质科学,1993(1):96-101. [15] 张慧,郑金龙.福建马坑铁矿主要含水层水化学特征与突水水源的识别[J].有色金属(矿山部分),2010(2):20-24. [16] 周志芳,王锦国.河流峡谷区地下水温度异常特征分析[J].水科学进展,2003,14(1):62-66. [17] 连英丽,张光辉,聂振龙,等.西北内陆张掖盆地地下水温度变化特征及其指示意义[J].地球学报,2011,32(2):195-203. -

计量
- 文章访问数: 2534
- HTML浏览量: 406
- PDF下载量: 1885
- 被引次数: 0