Evaluation and division for soil erosion in the Nantong coal mining area based on RS and GIS
-
摘要: 以重庆市南桐矿区为研究对象,运用遥感和GIS技术获取对水土流失影响较大的植被覆盖度、地形坡度、土地利用类型等信息并进行空间叠加分析,计算了水土流失类型及面积。研究结果表明,南桐矿区水土流失面积262.91km2,侵蚀模数2281t/(km2?a),水土流失强度以轻度和中度为主,其中轻度流失132.37km2,中度流失108.95km2。根据区域地貌类型以及水土流失特征,将研究区水土流失划分为盆边低山丘陵中强度流失区、北部坪状低山中轻度流失区和盆边中山轻度流失区三个类型区,盆边低山丘陵中强度流失区以中度流失为主;北部坪状低山中轻度流失区以轻度流失为主;盆边中山轻度流失区虽然以轻度流失为主,但微度流失也占有相当部分的比重。Abstract: Important factors that influencing soil erosion, vegetation coverage and land slope as well as land use types, are obtain by means of RS and GIS in the Nantong coal mining area. Soil erosion type and areas are calculated by space analysis of GIS. The results of the study show that soil erosion area is 262.91 km2 in the Nantong coal mining area. Soil erosion intensity is mainly slight and moderate. The average soil erosion reaches up to 2281 t/(km2? a). The slight soil erosion area is 132.37 km2 and moderate erosion area is 108.95 km2. Though the grade of soil erosion intensity is not high, the soil erosion area is large and thus the soil erosion is serious. According to the regional land types and characteristics of soil erosion, the investigated area is divided into three regions with different types. The eroded area in the mid-intensity erosion grade hill on the edge of the basin is large, and the main erosion type is mid-grade. The main erosion type is slight in the flat lower mountain mid-slight erosion region in the north. In middle mountains on the edge of the basin, the main erosion type is slight with large non-erosion area.
-
Key words:
- coal mining area /
- soil erosion /
- evaluation /
- division /
- RS /
- GIS
-
[1] Shi Zhihua, Cai Chongfa, Ding Shuwen. Et a1. Soil conservation planning at the small watershed level using RUSI. E with GIS: a case study in the Three Gorge Area of China[J]. Catena, 2004, 55(1): 33-48. [2] 孙长安.国内外应用“3S”技术开展水土流失监测的发展状况[J].中国水土保持,2008,(6):54-57. [3] 贺奋琴,何政伟,尹建忠.基于遥感和GIS的水土流失因子信息提取与分级定标研究——以攀枝花市为例[J].测绘科学,2006,31(4):126-127. [4] 中华人民共和国水利部.中华人民共和国行业标准(SL190-96)土壤侵蚀分类分级标准[S].1997. [5] 章文波,符素华,刘宝元.目估法测量植被覆盖度的精度分析[J].北京师范大学学报(自然科学版),2001,37(3):402-408. [6] 张云霞,李晓兵,陈云浩.草地植被覆盖度的多尺度遥感与实地测量方法综述[J].地球科学进展,2003,18(1):85-93. [7] 杨勤科,罗万勤,马宏斌,等.区域水土流失植被因子的遥感提取[J].水土保持研究,2006,13(5):267-268,271. [8] 邵子玉.基于高分辨率遥感影像的水土流失监测方法研究[J].中国水土保持,2010,(2):11-12. [9] 刘耀林,罗志军.基于GIS的小流域水土流失遥感定量监测研究[J].武汉大学学报,信息科学版,2006,31(1):35-38. [10] Anatoly A Gitelson, Yoram J Kaufman, Robert Stark, et a1. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment,2002,80(1):76-87. [11] 夏照华,张克斌,李瑞,等.基于NDVI的农牧交错区植被覆盖度变换研究:以宁夏盐池县为例[J].水土保持研究,2006,13(6):179-181. [12] 卢玉冬,尹光志,熊有胜,等.应用TM图像分析重庆南川市土壤侵蚀与植被覆盖度的关系[J].南京农业大学学报,2005,28(4):72-75. [13] 胡振琪,陈涛.基于ERDAS的矿区植被覆盖度遥感信息提取研究——以陕西省榆林市神府煤矿区为例[J].西北林学院学报,2008,23(2):164-167. -

计量
- 文章访问数: 3831
- HTML浏览量: 400
- PDF下载量: 2802
- 被引次数: 0