Impact on soil CO2 concentration by the changes of land use and vegetation cover in karst area
-
摘要: 通过选择3个具有不同地质背景、气候条件等环境特征的山西汾阳马跑-郭庄岩溶泉域、湖南湘西大龙洞地下河流域、广西桂江流域,对流域内具有代表性的不同土地利用方式和覆被类型下垫面土壤20~50cm深处CO2浓度进行检测。结果显示,土地利用方式和覆被变化对3个流域岩溶土壤中20cm、30cm、40cm和50cm深处CO2浓度具有明显的影响作用:湖南湘西大龙洞地下河流域多数样地土壤CO2表现为随土层的加深先增加后降低的双向梯度;山西马跑-郭庄泉域玉米地的土壤CO2浓度比种植马铃薯的高,且随着覆被条件由草地→灌丛→林地的改善,土壤的扰动性变小,CO2浓度差趋于减少,变幅趋于稳定。各个流域相同覆被类型,群落结构和优势种变化越小,土壤CO2浓度变幅越小。Abstract: Three watersheds, the Mapao-Guozhuang Spring Catchment in Fenyang, Shanxi Province, the Dalongdong Underground River Watershed in Xiangxi, Hunan Province and the Guijiang Watershed in Guangxi Province, with different geologic and climatic conditions are selected as the study areas. Those three watersheds represents different typical land use type and vegetation cover. Their soil CO2 concentrations at 20~50cm depth under the ground are tested. The results prove that the change of land use and vegetation cover affects intensely on soil CO2 concentration from 20 to 50cm depth. Many plots in the Dalongdong Underground River Watershed show the character of Bidirectional gradient, which means that along with depth, CO2 concentration rises at first, but begins to reduce from 40cm deep downwards. In the Mapao-guozhuang Spring Catchment, soil CO2 concentration in the corn fields is higher than that in the potato fields. With vegetation condition improving from grass to shrub and to forest, soil disturbance gets less, the distinctions of CO2 concentration become smaller and the variation scope tends to stable. In every study watersheds, between the same vegetation cover patterns, the less the change in community structure and dominant species, the less variation scope of soil CO2 concentration.
-
Key words:
- land use /
- vegetation cover change /
- karst area /
- soil CO2
-
[1] Post W M, Emanuelw R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298(8): 156-159. [2] Schlesingerw H. Evidence from chronoseauence studies for a low carbon storage potential of soil[J].Nature,1990,348(15):232-234. [3] Houghton R A. Changes in the storage of terrestrial carbon since 1950[A].Lal R.Soils and Globe Change[C].London: CRC Press,1995,45-65. [4] Liu Ying,Han Shi jie,Li Xuefeng. The contribution of root respiration of Pinuskoraiensis seedlings total soil respiration under elevated CO2 concentrations[J].Journal of Forest Research,2004,15(3):187-191. [5] 彭少麟.植物群落演替研究Ⅱ.动态研究的方法[J].生态学报,1994,2:117-119. [6] 黄海澎.亚热带喀斯特峰林平原地区土壤CO2变化规律与土壤改良[D].贵州师范大学,2001:11. [7] 莫彬,曹建华,徐祥明,等.岩溶山区不同土地利用方式对土壤活性有机碳动态的影响[J].生态环境,2006,15(6):1224-1230. [8] 蓝家程,傅瓦利,袁波,等.岩溶山区土地利用方式对土壤活性有机碳及其分布的影响[J].中国岩溶,2011,(2):175-180. [9] 潘根兴,曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程——以桂林峰丛洼地岩溶系统为例[J].中国岩溶,1999.18(4):287-296. [10] 梁福源,宋林华,王富昌,等.路南石林地区土壤空气中CO2浓度分布规律与土下溶蚀形态研究[J].中国岩溶,2000,19(2):180-187. [11] 曹建华,袁道先,潘根兴,等.不同植被下土壤碳转移对岩溶动力系统中碳循环的影响[J].地球与环境,2004,32(1):90-96. [12] 吴威,况明生,魏秉铎,等.亚热带岩溶山区植被演替和夏季土壤CO2浓度动态关系[J].西南师范大学学报(自然科学版),2004,29(2):289-293. [13] 周运超,周习会,熊志斌,等.岩溶系统不同植被下土壤碳排放的温度效应[J].贵州科学,2004,22(4):21-40. [14] 邓艳,覃星铭,蒋忠诚,等.表层岩溶动力系统中土壤水分及岩溶效应[J].应用生态学报,2009,20(7):1586-1590. [15] 高波.郭庄泉流量衰减原因分析及对策[J].水资源保护,2002,1:64-70. [16] 何师意,周锦忠,曾飞跃.岩溶地下河流域地下水资源评价——以湖南湘西大龙洞为例[J].水文地质工程地质,2007,5:33-36. [17] 朱明秋,梁彬,陈宏峰,等.湘西大龙洞岩溶流域农业生态环境与治理措施[J].中国岩溶,2005,24(3):220-226.554. -

计量
- 文章访问数: 2259
- HTML浏览量: 455
- PDF下载量: 847
- 被引次数: 0