Calculation of atmospheric CO2 sink formed in karst progresses of the karst divided regions in China
-
摘要: 根据中国岩溶碳汇计算的需要,将我国岩溶地区划分为南方岩溶区、北方岩溶区、青藏高原岩溶区和埋藏岩溶区4种类型区,各区的岩溶面积分别为56.48万km2、32.58万km2、55.60万km2和200.1万km2。各区岩溶水的径流模数和岩溶作用强度存在差异,南方岩溶区比其他区的岩溶作用强度明显大得多。以取得的调查监测和统计资料为依据,对4种类型区和中国的岩溶碳汇量进行了重新计算,南方岩溶区、北方岩溶区、青藏高原岩溶区和埋藏岩溶区岩溶碳汇量分别为1909.9万tCO2/a、600.5万tCO2/a、580.1万tCO2/a、608.6万tCO2/a,由此获得中国岩溶碳汇总量为3699.1万tCO2/a。该结果比前人的研究更全面地反映了当前我国岩溶地区碳水钙无机循环产生的大气CO2汇量。Abstract: In order to calculate the atmospheric CO2 sink formed in karst processes, the karst area of China can be divided into four types of karst regions - south China karst region, north China karst region, the Tibet plateau karst region and the buried karst region. The area of the above regions is 564 800 km2, 325 800 km2, 556 000 km2 and 2 001 000 km2 respectively. The karst water flow and the karstification degree in each region are different. Solution rate of the carbonate rocks in south China karst region is much bigger than that in the other three karst regions. Based on the data from recent geologic survey and statistics of the other research results, the atmospheric CO2 sinks formed in karst processes of the above-mentioned four karst regions are estimated as 1 909.9′104 tCO2/a, 600.5′104 tCO2/a, 580.1′104 tCO2/a and 608.6′104 tCO2/a respectively. Therefore, the total atmospheric CO2 sink formed in karst processes of China is 3 699.1′104 tCO2/a. This estimated result is more comprehensively to represent the present quantity of atmospheric CO2 sink formed in the inorganic carbon-water-calcium cycle in whole karst areas in China than that of the former other estimations.
-
Key words:
- karstification /
- atmospheric CO2 sink /
- divided karst regions /
- China
-
[1] 徐胜友,蒋忠诚.我国岩溶作用与大气温室气体CO2源汇关系的初步估算,科学通报,1997,42(9):953-956. [2] Jiang Zhoncheng,Yuan Daoxian. CO2 source-sink in karst processes in karst areas of China.Episodes,1999,22(1):33-35. [3] Yuan Daoxian. The carbon cycle in karst[C]//Z Geomorph N F, 1997, (Suppl-Bd108): 91-102. [4] 刘再华,Wolfgang Dreybrodt,王海静.一种由全球水循环产生的可能重要的CO2汇[J].科学通报,2007,52(20):2418-2422. [5] 李国芬,韦复才,梁小平,等.中国岩溶水文地质图(1∶400万)及说明书[M].北京:地图出版社,1992. [6] 李大通,黄汉铎,黄萍益,等.中国可溶岩类型图(1∶400万)[M].北京:地图出版社,1985. [7] 李大通,罗雁.中国碳酸盐岩分布面积测量[J].中国岩溶,1983,2(2):147-150. [8] 蒋忠诚,夏日元,时坚,等.西南岩溶地下水资源开发利用效应与潜力分析,地球学报,2006,27(5):495-502. [9] 卢耀如,张凤娥,刘长礼,等.中国典型地区岩溶水资源及其生态水文特性[J].地球学报,2006,27(5):393-402.156. [10] 邱冬生,庄大方,胡云锋,等.中国岩石风化作用所致的碳汇能力估算[J].地球科学-中国地质大学学报,2004,29(2):177-182. [11] 李晶莹,张经.中国主要流域盆地风化剥蚀率的控制因素[J].地理科学,2003,23(4):434-439. [12] Zhang J,Wang W W,Letolle R. Major element chemistry of the Huanghe, China- weathering processes and chemical flexes[J].Journal of Hydrology,1995,268:173-203. [13] Hren M T, Chamberlain C P, Hilley G E. Major ion chemistry of the Yarlung Tsangpo–Brahmaputra river: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya[J].Geochimica et Cosmochimica Acta,2007,71:2907-2935. [14] Weihua Wu, Shijin Xu, Jiedong Yang, et al. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau[J].Chemical Geology, 2008, 249:307-320. [15] 侯光才,梁永平,尹立河,等.鄂尔多斯盆地地下水系统及水资源潜力[J].水文地质工程地质,2009,(1):18-22. [16] 陈伟杰,熊康宁,任晓冬,等.岩溶地区石漠化综合治理的固碳增汇效应研究——基于基地监测数据的分析[J].中国岩溶,2010,29(3):229-238. [17] 章程.不同土地利用土下溶蚀速率季节差异及其影响因素[J].地质论评,2010,56(1):136-140. [18] 袁道先,刘再华,蒋忠诚,等.碳循环与岩溶地质环境[M].科学出版社,2003:20-26. [19] 戴民汉,翟惟东,鲁中明,等.中国区域碳循环研究进展与展望[J].地球科学进展,2004,19(2):120-130. -

计量
- 文章访问数: 3408
- HTML浏览量: 434
- PDF下载量: 1658
- 被引次数: 0