留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用ASTER卫星立体像对提取喀斯特数字地形模型——以广西大化高峰丛深洼地喀斯特地貌为例(英文)

粱福源 石玉若 GeorgeA.Brook

粱福源, 石玉若, GeorgeA.Brook. 利用ASTER卫星立体像对提取喀斯特数字地形模型——以广西大化高峰丛深洼地喀斯特地貌为例(英文)[J]. 中国岩溶, 2011, 30(2): 233-242.
引用本文: 粱福源, 石玉若, GeorgeA.Brook. 利用ASTER卫星立体像对提取喀斯特数字地形模型——以广西大化高峰丛深洼地喀斯特地貌为例(英文)[J]. 中国岩溶, 2011, 30(2): 233-242.
LIANG Fu-yuan, SHI Yu-ruo, George A. Brook. Mapping cockpit karst in Southern China from ASTER stereo images: DEM validation and accuracy assessment[J]. CARSOLOGICA SINICA, 2011, 30(2): 233-242.
Citation: LIANG Fu-yuan, SHI Yu-ruo, George A. Brook. Mapping cockpit karst in Southern China from ASTER stereo images: DEM validation and accuracy assessment[J]. CARSOLOGICA SINICA, 2011, 30(2): 233-242.

利用ASTER卫星立体像对提取喀斯特数字地形模型——以广西大化高峰丛深洼地喀斯特地貌为例(英文)

基金项目: WesternIllinoisUniversity(西伊利诺伊大学)研究项目资助

Mapping cockpit karst in Southern China from ASTER stereo images: DEM validation and accuracy assessment

  • 摘要: ASTER卫星立体像对已经被成功地用于提取全球数字地形模型(DEM),其有效性已经在不同类型的非喀斯特地貌区域得到验证。和一般地貌相比,喀斯特地形,特别是中国南方喀斯特,具有自己独特的形态特征。能否从ASTER影像中精确地提取喀斯特地貌DEM目前尚未见到有任何报道。本文利用ASTER影像成功地提取了广西大化地区高峰丛深洼地的喀斯特地貌DEM,并且将提取结果与同一地区1∶5万地形图控制点的高程和4个剖面的高程变化进行了对比。研究区内绝大部分区域是喀斯特地貌,但在其西北部有一舌状砂岩地貌分布,从而提供了一个很好的喀斯特和非喀斯特地貌DEM精度对比的机会。本文的研究结果表明,从ASTER影像提取出来的砂岩地貌的DEM均方根误差要小于喀斯特地区,表明从ASTER影像中能更有效地提取非喀斯特地貌的DEM。相比之下,提取得到的喀斯特DEM精确度则稍差。究其原因主要是因为研究区内独特的高峰丛深洼地地形形态。由于峰丛地形的阴影在构成立体像对的两幅影像(nadir-looking和aft-loo-king)上的大小和形态差异很大,导致了DEM生产过程中两幅影像不能精确配准,从而产生比较大的误差。相比之下,砂岩地区地貌相对比较平坦,地形阴影大小和形态在两幅影像上差别不大,故而能得到精度比较高的数字地形模型。本文研究结果同时还表明适当增加地面控制点能在一定程度上改善提取出来的喀斯特地貌DEM的精度。尽管提取的数字地形模型精度稍低,其均方根误差仍然远远小于该地区峰丛和洼地个体体量。因此本研究认为从ASTER立体像对提取的数字地形模型可广泛用于喀斯特地貌形态特征研究。

     

  • [1] K??b A. Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS Journal of Photogrammetry and Remote Sensing [J]. 2002, 57 (1-2), 39-52.
    [2] Liu J G, Mason P J, Clerici N, et al. Landslide hazard assessment in the Three Gorges area of the Yangtze River using ASTER imagery: Zigui-Badong. Geomorphology [J]. 2004, 61 (1-2), 171-187.
    [3] K??b A. Combination of SRTm3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment [J]. 2005, 94 (4), 463-474.
    [4] Berthier E, Arnaud Y, Kumar R, et al. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment [J]. 2007, 108 (3), 327-338.
    [5] Prima O D A, Echigo A, Yokoyama R, et al. Supervised landform classification of Northeast Honshu from DEM-derived thematic maps. Geomorphology [J]. 2006, 78 (3-4), 373-386.
    [6] Smith M J, Rose J, Booth S. Geomorphological mapping of glacial landforms from remotely sensed data: An evaluation of the principal data sources and an assessment of their quality. Geomorphology [J]. 2006, 76 (1-2), 148-165.
    [7] Martinez-Casasnovas J A, Ramos M C, Ribes-Dasi M. Soil erosion caused by extreme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma [J]. 2002, 105 (1-2), 125-140.
    [8] Sonneveld M P W, Schoorl J M, Veldkamp A. Mapping hydrological pathways of phosphorus transfer in apparently homogeneous landscapes using a high-resolution DEM. Geoderma [J].2006, 133 (1-2), 32-42.
    [9] Lang H, Welch R. Algorithm theoretical basis document for ASTER digital elevation models [R], Version 3.0. 1999, Jet Propulsion Laboratory, Pasadena, CA. 69 pp.
    [10] Toutin T. Generating DEM from stereo images with a photogrammetric approach: examples with VIR and SAR data. EARSeL Advances in Remote Sensing [J]. 1995, 4 (2), 110–117.
    [11] Hirano A, Welch R, Lang H. Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS Journal of Photogrammetry and Remote Sensing [J]. 2003, 57 (5), 356-370.
    [12] Eckert S, Kellenberger T, Itten K. Accuracy assessment of automatically derived digital elevation models from aster data in mountainous terrain. International Journal of Remote Sensing [J]. 2005, 26 (9), 1943-1957.
    [13] San B T, Süzen M L. Digital elevation model (DEM) generation and accuracy assessment from ASTER stereo data. International Journal of Remote Sensing [J]. 2005, 26 (22), 5013-5027.
    [14] Racoviteanu A E, Manley William F, Arnaud Yves, et al. Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes. Global and Planetary Change [J].2007, 59(1-4), 110-125.
    [15] Toutin T, Cheng P. Comparison of automated digital elevation model extraction results using along-track ASTER and across-track SPOT stereo images. Optical Engineering [J]. 2002, 41, 2102-2106.
    [16] Toutin T. Elevation modeling from satellite visible and infrared (VIR) data. International Journal of Remote Sensing [J]. 2001, 22 (6), 1097–1125.
    [17] Toutin T. Three-dimensional mapping with ASTER stereo data in rugged topography. IEEE Transactions on Geoscience and Remote Sensing [J]. 2002, 40 (10), 2241–2247.
    [18] K??b A, Huggel C, Paul F, et al.Glacier monitoring from aster imagery: accuracy and applications. EARSeL Proceedings [C], LIS-SIG Workshop, Berne, March 11-13, 2002, 43-53.
    [19] Welch R, Jordan T, Lang H, et al. ASTER as a source for topographic data in the late 1990's. IEEE Transactions on Geoscience and Remote Sensing [J]. 1998, 36 (4), 1282–1289.
    [20] Giles PT. Remote sensing and cast shadows in mountainous terrain. Photogrammetric Engineering and Remote Sensing [J]. 2001, 67 (7), 833-839.
    [21] Dare P M. Shadow analysis in high-resolution satellite imagery of urban areas. Photogrammetric Engineering and Remote Sensing [J]. 2005, 71 (2), 169-177.
    [22] National Bureau of Technical Supervision National standard (GB 12340-1990): 1:25 000, 1:50 000, 1:100 000 topographic maps-- specification for aerophotogrammetric office operation (in Chinese)[S], 1990, Standards Press of China, Beijing.
    [23] Krupnik A. Accuracy assessment of automatically derived digital elevation models from SPOT images. Photogrammetric Engineering and Remote Sensing [J]. 2000, 66 (8), 1017–1023.
  • 加载中
计量
  • 文章访问数:  1469
  • HTML浏览量:  21
  • PDF下载量:  1406
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-26
  • 刊出日期:  2011-06-25

目录

    /

    返回文章
    返回

    温馨提示

    《中国岩溶》新采编系统已上线。即日起,新稿件都需采用新采编系统投稿。原采编系统已受理的投稿,审稿流程仍在原采编系统中完成。

    老用户在登录新系统时,如果密码不正确,需要点击下面的找回密码,重置一个新密码,方可登录进系统。

    《中国岩溶》原网站地址:http://zgyr-ov.karst.ac.cn/

    《中国岩溶》编辑部
    2022年4月20日