Preliminary study on short-time carbon absorption in epikarst spring basin─A case of the Shuifang Spring in Jinfo Mountain, Chongqing
-
摘要: 本文以水房泉表层岩溶泉域为例,通过CDTP300多参数自动水质监测仪提供的年际连续的电导率、水温、水位,利用岩溶水化学-径流量方法计算出水房泉连续两年各月的CO2吸收量和年吸收总量。计算结果显示水房泉各月CO2吸收量中6、7、8三个月吸收量较大,1、2、12月吸收量均较小;年最大CO2吸收量出现在7月份,年中最小CO2吸收量出现在1月份。水房泉各月CO2吸收量同水房泉出口月径流量和月降雨量都有很好相关性,雨季吸收量远大于旱季吸收量。泉水HCO3-含量受到气温、降水、径流量和土壤CO2含量的综合影响, HCO3-含量的最高值与月CO2吸收量的最大值在时间上存在2个月的滞后现象。相对于较大流域碳汇的估算,以小流域为对象从短时间尺度计算碳汇更加精确,而且对于流域岩溶作用碳汇过程及其控制机理的深入揭示也是非常必要的。Abstract: The study mainly focus on the Shuifang epikarst spring basin. By using the multi-parameter instrument CDTP300, interannual continuous data of conductivity, water temperature and water level are got. Annual and monthly CO2 consumption in two years are calculated by means of karst hydrochemistry-discharge method. The result shows that CO2 consumption of Shuifang Spring is relatively high in June, July and August; while it’s low in January, February and December. The maximum value of CO2 absorptive quantity appeared in July and the minimum in January. The result also shows that the monthly discharge of the Shuifang Spring and rainfall are intensively correlated with the CO2 consumption, and the CO2 consumption in rainy season is much larger than dry season. The bicarbonate concentration of the Shuifang Spring is influenced by air temperature, rainfall, discharge and soil CO2. There are two months time-delay between the biggest monthly CO2 consumption and the highest bicarbonate concentration. Through this study it is found that the estimate of carbon flux in small watersheds by hydrochemistry-discharge method is more accurate than large watersheds and it may give an effective method to the further research on carbon sink for karstification and its control mechanism in epikarst zone.
-
Key words:
- epikarst spring /
- CO2 absorptive quantity /
- correlation
-
[1] Broecker W S, Takahashi T, Simpppson H J, et al. Fate of fossil fuel carbon dioxide and the global carbon budget[J].Science,1979,206:409-418. [2] Schindler D W. The mysterious missing sink [J].Nature,1999,398:105-106. [3] 王效科,白艳莹,欧阳志,等.全球碳循环中的失汇及其形成原因[J].生态学报,2002,22(1):95-101. [4] 袁道先.现代岩溶学和全球变化研究[J].地学前沿,1997,4(1-2):17-24. [5] Zaihua Liu, Wolfgang Dreybrodt. Dissolution kinetics of calcium carbonate minerals in H2O - CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2 O+ CO2→ H++ HCO-3[J].Geochimica Cosmochimica Acta,1997,61(4):2879-2889. [6] 徐胜友,蒋忠诚.我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J].科学通报,1997,42(9):953-956. [7] 杨立铮,卫迦.岩溶系统对大气CO2的调节作用[J].成都理工学院学报,1997,24:32-36. [8] Li Bin, Yuan Daoxian. Relationship between carbon cycle in karst area and CO2 source-sink of atmosphere-Case of Guizhou Karst[J].Carsologica sinica,1996,15(1-2):41-48. [9] 陈鸿汉,董英,张永祥.济南岩溶泉域系统碳循环[J].中国岩溶,1998,17(4):320-323. [10] 万军伟,晁念英,沈继方,等.湖北清江罗家坳河间地块岩溶系统碳循环特征[J].中国岩溶,1999,18(2):124-127. [11] 刘再华,WolfgangDreybrodt,王海静.一种由全球水循环产生的可能重要的CO2汇[J].科学通报,2007,52(20):2418-2422. [12] 刘再华.大气CO2两个重要的汇[J].科学通报,2000,45(21):2348-2351. [13] 李林立.西南典型岩溶生态环境对表层岩溶水调蓄功能的影响研究[D].西南大学,2009. [14] 刘丛强,蒋颖魁,陶发祥.西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]地球化学,2008,37(4):404-414. [15] 吴月霞,蒋勇军,袁道先等.岩溶泉域降雨径流水文过程的模拟——以重庆金佛山水房泉为例[J].水文地质工程地质,2007,6:41-47. [16] 刘再华,袁道先.中国典型表层岩溶系统的地球化学动态特征及其环境意义[J].地质论评,2000,46(3):324-326. [17] 何师意,徐胜友,张美良.岩溶土壤中浓度水化学观测及其与岩溶作用关系[J].中国岩溶,1997,16(4):319-323. [18] 刘再华,李强,汪进良.桂林岩溶试验场钻孔水化学暴雨动态和垂向变化解释[J].中国岩溶,2004,23(3):169-176. -

计量
- 文章访问数: 3358
- HTML浏览量: 388
- PDF下载量: 1765
- 被引次数: 0