• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶区石灰土全氮含量高光谱反演研究

何文 李艳琼 余玲 王金叶 倪隆康 李宁

何 文,李艳琼,余 玲,等. 岩溶区石灰土全氮含量高光谱反演研究[J]. 中国岩溶,2024,43(5):1047-1056, 1064 doi: 10.11932/karst20240505
引用本文: 何 文,李艳琼,余 玲,等. 岩溶区石灰土全氮含量高光谱反演研究[J]. 中国岩溶,2024,43(5):1047-1056, 1064 doi: 10.11932/karst20240505
HE Wen, LI Yanqiong, YU Ling, WANG Jinye, NI Longkang, LI Ning. Hyperspectral inversion of total nitrogen content in calcareous soil in karst areas[J]. CARSOLOGICA SINICA, 2024, 43(5): 1047-1056, 1064. doi: 10.11932/karst20240505
Citation: HE Wen, LI Yanqiong, YU Ling, WANG Jinye, NI Longkang, LI Ning. Hyperspectral inversion of total nitrogen content in calcareous soil in karst areas[J]. CARSOLOGICA SINICA, 2024, 43(5): 1047-1056, 1064. doi: 10.11932/karst20240505

岩溶区石灰土全氮含量高光谱反演研究

doi: 10.11932/karst20240505
基金项目: 广西自然科学基金项目(2024GXNSFAA010318);广西重点研发计划项目(AB22035060);国家自然科学基金(32060369) ;广西植物研究所基本业务费(桂植业23005);广西喀斯特植物保育与恢复生态学重点实验室资助(22-035-26)
详细信息
    作者简介:

    何文(1988 -),男,助理研究员,博士研究生,主要从事生态环境遥感方面研究。E-mail:hewen0320@126.com

    通讯作者:

    王金叶(1965-),男,教授,博士,主要从事生态经济、森林生态水文方面研究。E-mail:wangjinye66@163.com

  • 中图分类号: S153.6;S127

Hyperspectral inversion of total nitrogen content in calcareous soil in karst areas

  • 摘要: 石灰土是岩溶地区主要的土壤类型之一,准确快速估测石灰土全氮(TN)含量是科学评价岩溶区土壤环境质量的重要保障。文章以广西岩溶区石灰土为研究对象,对土壤光谱数据进行5种数学变换,对比分析偏最小二乘回归(PLSR)、广义神经网络(GRNN)以及二者组合(PLSR_GRNN)三种模型对土壤TN含量的高光谱反演能力。结果表明:(1)石灰土TN对光谱600 nm、1300 nm、1600 nm、1900 nm以及2300 nm附近波段反射率较为敏感;(2)对土壤原始光谱做微分变换、倒数对数变换以及包络线去除变换均在一定程度上能够提高光谱对石灰土TN含量的反演能力,并以微分变换效果最佳;(3)建立的PLSR_GRNN高光谱反演模型能够综合PLSR模型和GRNN模型的优点,反演精度较高,并以二阶微分变换(SDR)建立的反演模型效果最好,模型验证决定系数高达0.90,均方根误差仅为0.51,适合于岩溶区石灰土TN含量高光谱反演。基于高光谱模型能够对岩溶区石灰土TN含量进行快速、高精度反演,研究结果可为区域土壤修复和开发利用提供科学依据。

     

  • 图  1  采样点分布示意图

    注:底图来源于自然资源部标准地图服务。

    Figure  1.  Distribution of sampling points

    Note: Base map was derived from the standard mapping service of Ministry of Natural Resources.

    图  2  不同TN含量的土壤光谱反射率

    Figure  2.  Soil spectral reflectance for different TN contents

    图  3  不同变换形式土壤光谱反射率与TN含量的相关系数

    Figure  3.  Correlation coefficient between TN content and soil spectral reflectance in different transformation forms

    图  4  基于PLSR_GRNN模型的土壤TN含量实测值与预测值比较(SDR)

    Figure  4.  Comparison of measured and predicted values of soil TN content with the PLSR_GRNN model (SDR)

    表  1  土壤氮元素计量特征

    Table  1.   Measurement characteristics of soil total nitrogen

    最大值最小值均值标准差变异系数峰度偏度K-S检验
    6.801.053.341.3340%−0.080.650.20
    下载: 导出CSV

    表  2  土壤TN含量PLSR模型

    Table  2.   PLSR model for soil TN content

    光谱指标 入选
    波段个数
    主成
    分个数
    建模集(n=40) 验证集(n=10)
    R2 RMSE R2 RMSE P
    R 1128 2 0.24 1.23 0.17 1.34 0.15
    FDR 705 6 0.79 0.65 0.81 0.65 0.00**
    SDR 645 3 0.84 0.55 0.82 0.64 0.00**
    lg (1/R) 408 2 0.37 1.12 0.24 1.29 0.09
    (lg (1/R))′ 584 6 0.77 0.67 0.82 0.67 0.00**
    CR 559 4 0.63 0.86 0.57 1.03 0.00**
    注:* 表示达到显著水平(P≤0.05);** 表示达到极显著水平(P≤0.01)。
    Note: * represents the significant level (P≤0.05); ** represents the extremely significant level (P≤0.01).
    下载: 导出CSV

    表  3  土壤TN含量GRNN模型

    Table  3.   GRNN model for soil TN content

    光谱变换 入选波段个数 平滑因子 建模集(n=40) 验证集(n=10)
    R2 RMSE R2 RMSE P
    R 1128 2.1 0.48 1.10 0.15 1.49 0.27
    FDR 705 1.6 0.91 0.70 0.78 0.75 0.00**
    SDR 645 3.5 0.92 0.62 0.59 1.03 0.01**
    lg(1/R) 408 2.6 0.62 0.88 0.26 1.32 0.13
    (lg(1/R))′ 584 5.6 0.75 0.74 0.59 1.02 0.01**
    CR 559 3.6 0.76 0.73 0.31 1.21 0.09
    注:* 表示达到显著水平(P≤0.05);** 表示达到极显著水平(P≤0.01)。
    Note: * represents the significant level (P≤0.05); ** represents the extremely significant level (P≤0.01).
    下载: 导出CSV

    表  4  土壤TN含量PLSR_GRNN模型

    Table  4.   PLSR_GRNN model for soil TN content

    光谱变换 主成分数 平滑因子 建模集(n=40) 验证集(n=10)
    R2 RMSE R2 RMSE P
    R 2 0.3 0.47 1.05 0.32 1.25 0.09
    FDR 6 1.0 0.91 0.74 0.85 0.83 0.00**
    SDR 3 0.2 0.92 0.43 0.90 0.51 0.00**
    lg(1/R) 2 0.2 0.60 0.92 0.55 1.04 0.01**
    (lg(1/R))′ 6 0.8 0.86 0.62 0.75 0.80 0.01**
    CR 4 0.4 0.80 0.77 0.76 0.86 0.00**
    注:* 表示达到显著水平(P≤0.05);** 表示达到极显著水平(P≤0.01)。
    Note: * represents the significant level (P≤0.05); ** represents the extremely significant level (P≤0.01).
    下载: 导出CSV
  • [1] Maire V, Wright I J, Prentice I C, Batjes N H, Bhaskar R, Van Bodegom P M, Cornwell W K, Ellsworth D, Niinemets Ü, Ordonez A. Global effects of soil and climate on leaf photosynthetic traits and rates[J]. Global Ecology and Biogeography, 2015, 24(6): 706-717. doi: 10.1111/geb.12296
    [2] Zhu Q L, Xing X Y, Zhang H, An S S. Soil ecological stoichiometry under different vegetation area on loess hilly-gully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674-4682. doi: 10.5846/stxb201212101772
    [3] 张婷, 代群威, 邓远明, 李琼芳, 董发勤, Bowen Li, Bruce W Fouke, 李相邑. 九寨沟优势植物凋落物叶片淋溶的碳氮磷释放特征[J]. 中国岩溶, 2021, 40(1):133-139.

    ZHANG Ting, DAI Qunwei, DENG Yuanming, LI Qiongfang, DONG Faqin, Bowen Li, Bruce W Fouke, LI Xiangyi. Release characteristics of carbon, nitrogen and phosphorus from withered leaves of dominant plants in Jiuzhaigou valley[J]. Carsologica Sinica, 2021, 40(1): 133-139.
    [4] Obukhov A I, Orlov D S. Spectral reflectivity of the major soil groups and possibility of using diffuse reflection in soil investigations[J]. Soviet Soil Science, 1964, 2(2): 174-184.
    [5] Galvao L S, Vitorello I. Role of organic matter in obliterating the effects of iron on spectral reflectance and colour of Brazilian tropical soils[J]. International Journal of Remote Sensing, 1998, 19(10): 1969-1979. doi: 10.1080/014311698215090
    [6] Karnieli A, Verchovsky I, Hall J K, Oren E. Geographic information system for semi-detailed mapping of soils in a semi-arid region[J]. Geocarto International, 1998, 13(3): 29-42. doi: 10.1080/10106049809354650
    [7] Dalal R C, Henry R J. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[J]. Soil Science Society of America Journal, 1986, 50(1): 120-123. doi: 10.2136/sssaj1986.03615995005000010023x
    [8] Reeves I J, Mccarty G, Meisinger J. Near infrared reflectance spectroscopy for the analysis of agricultural soils[J]. Journal of Near Infrared Spectroscopy, 1999, 7(1): 179.
    [9] 吴明珠, 李小梅, 沙晋明. 亚热带红壤全氮的高光谱响应和反演特征研究[J]. 光谱学与光谱分析, 2013, 33(11): 3111-3115.

    WU Mingzhu, LI Xiaomei, SHA Jinming. Spectral inversion models for prediction of red soil total nitrogen content in subtropical region (Fuzhou)[J]. Spectroscopy and Spectral Asnalysis, 2013, 33(11): 3111-3115.
    [10] 谢文. 基于高光谱技术的森林土壤不同养分含量光谱特征及估测模型研究[D]. 南昌:江西农业大学, 2017.

    XIE Wen. Study on spectral characteristics and estimation models of different nutrient contents in forest soils based on hyperspectral technology[D]. Nanchang: Jiangxi Agriculture Universty, 2017.
    [11] 吴俊, 郭大千, 李果, 郭熙, 钟亮, 朱青, 国佳欣, 叶英聪. 基于CARS-BPNN的江西省土壤有机碳含量高光谱预测[J]. 中国农业科学, 2022, 55(19):3738-3750.

    WU Jun, GUO Daqian, LI Guo, GUO Xi, ZHONG Liang, ZHU Qing, GUO Jiaxin, YE Yingcong. Prediction of soil organic carbon content in Jiangxi Province by vis-nir spectroscopy based on the CARS-BPNN model[J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
    [12] 文冬妮, 杨程, 杨霖, 秦兴华, 孟磊, 何秋香, 朱同彬, Christoph Müller. 岩溶区农业种植对土壤有机氮矿化的影响[J]. 中国岩溶, 2020, 39(2):189-195.

    WEN Dongni, YANG Cheng, YANG Lin, QIN Xinghua, MENG Lei, HE Qiuxiang, ZHU Tongbin, Christoph Müller. Effects of agricultural cultivation on soil organic nitrogen mineralization in karst regions[J]. Carsologica Sinica, 2020, 39(2): 189-195.
    [13] Linker R, Shmulevich I, Kenny A, Shaviv A. Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy[J]. Chemosphere, 2025, 61(5): 652-658.
    [14] 刘秀英. 玉米生理参数及农田土壤信息高光谱监测模型研究[D]. 陕西:西北农林科技大学, 2016.

    LIU Xiuying. Monitoring models of physiological parameters of corn and farmland soil informatlon based on hyper-spectral reflectance[D]. Shaanxi:Northwest A & F Universty, 2016.
    [15] 赖倩倩, 杨霖, 秦兴华, 田伟, 伍延正, 汤水荣, 解钰, Christoph Müller, 孟磊. 蔗渣生物质炭对喀斯特农田石灰性土壤氮转化过程的短期影响[J]. 中国岩溶, 2019, 38(3):405-457. doi: 10.11932/karst2019y03

    LAI Qianqian, YANG Lin, QIN Xinghua, TIAN Wei, WU Yanzheng, TANG Shuirong, XIE Yu, Christoph Müller, MENG Lei. Study on short-term effects of sugarcane biochar on nitrogen transformation in calcareous soils in karst farmland[J]. Carsologica Sinica, 2019, 38(3): 405-457. doi: 10.11932/karst2019y03
    [16] 胡芳, 杜虎, 曾馥平, 宋同清, 彭晚霞, 兰斯安, 张芳. 广西不同林龄喀斯特森林生态系统碳储量及其分配格局[J]. 应用生态学报, 2017, 28(3):721-729.

    HU Fang, DU Hu, ZENG Fuping, SONG Tongqing, PENG Wanxia, LAN Sian, ZHANG Fang. Carbon storage and its allocation in karst forest at different stand ages in Guangxi, China[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 721-729.
    [17] 宋玉, 塔西甫拉提·特依拜, 李崇博, 侯艳军, 陶兰花, 张飞. 基于偏最小二乘法的土壤汞含量高光谱反演[J]. 地理与地理信息科学, 2015, 31(3):44-47, 53. doi: 10.3969/j.issn.1672-0504.2015.03.009

    SONG Yu, TASHPOLAT·Teyip, LI Chongbo, HOU Yanjun, TAO Lanhua, ZHANG Fei. PLSR based hyperspectral remote sensing retrieval of soil Hg content[J]. Geography and Geo-information Science, 2015, 31(3): 44-47, 53. doi: 10.3969/j.issn.1672-0504.2015.03.009
    [18] 郭超凡, 郭逍宇. 基于可见光波段包络线去除的湿地植物叶片叶绿素估算[J]. 生态学报, 2016, 36(20):6538-6546.

    GUO Chaofan, GUO Xiaoyu. Estimation of wetland plant leaf chlorophyll content based on continuum removal in the visible domain[J]. Acta Ecologica Sinica, 2016, 36(20): 6538-6546.
    [19] 胡芳, 蔺启忠, 王钦军, 王亚军. 土壤钾含量高光谱定量反演研究[J]. 国土资源遥感, 2012, 24(4):157-162.

    HU Fang, LIN Qizhong, WANG Qinjun, WANG Yajun. Quantitative inversion of soil potassium content by using hyperspectral reflectance[J]. Remote Sensing for Land & Resources, 2012, 24(4): 157-162.
    [20] Specht D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6): 568-576. doi: 10.1109/72.97934
    [21] 蒋烨林, 王让会, 李焱, 李成, 彭擎, 吴晓全. 艾比湖流域不同土地覆盖类型土壤养分高光谱反演模型研究[J]. 中国生态农业学报, 2016, 24(11):1555-1564.

    JIANG Yelin, WANG Ranghui, LI Yan, LI Cheng, PENG Qing, WU Xiaoquan. Hyper-spectral retrieval of soil nutrient content of various land-cover types in Ebinur lake basin[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11): 1555-1564.
    [22] Shi T Z, Chen Y Y, Liu Y L, Wu G F. Visible and near-infrared reflectance spectroscopy: An alternative for monitoring soil contamination by heavy metals[J]. Journal of Hazardous Materials, 2014, 265: 166-176. doi: 10.1016/j.jhazmat.2013.11.059
    [23] 卢志宏, 刘辛瑶, 常书娟, 杨胜利, 赵薇薇, 杨勇, 刘爱军. 基于BP神经网络的草原矿区表层土壤N/P高光谱反演模型[J]. 草业科学, 2018, 35(9):2127-2136.

    LU Zhihong, LIU Xinyao, CHANG Shujuan, YANG Shengli, ZHAO Weiwei, YANG Yong, LIU Aijun. Hyperspectral inversion of the surface soil N/P ratio in a grassland mining area based on the BP neural network[J]. Pratacultural Science, 2018, 35(9): 2127-2136.
    [24] 郭鹏, 李婷, 张世熔, 李智平, 梁俊捷. 西河流域不同海拔区土壤有效钾的高光谱反演[J]. 土壤通报, 2019, 50(2):274-281.

    GUO Peng, LI Ting, ZHANG Shirong, LI Zhiping, LIANG Junjie. Hyperspectral estimation of soil available potassium at different altitudes of the Xihe watershed[J]. Chinese Journal of Soil Science, 2019, 50(2): 274-281.
    [25] 李焱, 王让会, 管延龙, 蒋烨林, 吴晓全, 彭擎. 基于高光谱反射特性的土壤全氮含量预测分析[J]. 遥感技术与应用, 2017, 32(1):173-179.

    LI Yan, WANG Ranghui, GUAN Yanlong, JIANG Yelin, WU Xiaoquan, PENG Qing. Prediction analysis of soil total nitrogen content based on hyperspectral[J]. Remote Sensing Technology and Application, 2017, 32(1): 173-179.
    [26] 王世东, 石朴杰, 张合兵, 王新闯. 基于高光谱的矿区复垦农田土壤全氮含量反演[J]. 生态学杂志, 2019, 38(1):294-301.

    WANG Shidong, SHI Pujie, ZHANG Hebing, WANG Xinchuang. Retrieval of soil total nitrogen content in reclaimed farmland of mining area based on hyperspectral imaging[J]. Chinese Journal of Ecology, 2019, 38(1): 294-301.
    [27] 岳祥飞, 李衍青, 刘鹏. 广西岩溶区灌木林地凋落物—土壤碳、氮、磷化学计量特征[J]. 中国岩溶, 2023, 42(5):1106-1116.

    YUE Xiangfei, LI Yanqing, LIU Peng. Stoichiometric characteristics of C, N and P in soil and litter of shrublands in karst areas of Guangxi[J]. Carsologica Sinica, 2023, 42(5): 1106-1116.
    [28] 鲁如坤. 我国土壤氮、磷、钾的基本状况[J]. 土壤学报, 1989(3):280-286.

    LU Rukun. General status od nutrients (N, P, K) in soils of China[J]. Acta Pedologica Sinica, 1989(3): 280-286.
    [29] 王莉雯, 卫亚星. 湿地土壤全氮和全磷含量高光谱模型研究[J]. 生态学报, 2016, 36(16):5116-5125.

    WANG Liwen, WEI Yaxing. Estimating the total nitrogen and total phosphorus content of wetland soils using hyperspectral models[J]. Acta Ecologica Sinica, 2016, 36(16): 5116-5125.
    [30] Vohland Michael, Ludwig Marie, Harbich Monika, Emmerling Christoph, Thiele Bruhn Soeren. Using variable selection and wavelets to exploit the full potential of visible−near infrared spectra for predicting soil properties[J]. Journal of Near Infrared Spectroscopy, 2016, 24(3): 255-269. doi: 10.1255/jnirs.1233
    [31] 国佳欣, 赵小敏, 郭熙, 徐喆, 朱青, 江叶枫. 基于PLSR-BP复合模型的红壤有机质含量反演研究[J]. 土壤学报, 2020, 57(3):636-645.

    GUO Jiaxin, ZHAO Xiaomin, GUO Xi, XU Zhe, ZHU Qing, JIANG Yefeng. Inversion of organic matter content in red soil based on PLSR-BP composite model[J]. Acta Pedologica Sinica, 2020, 57(3): 636-645.
    [32] 谷佳慧, 杨奇勇, 蒋忠诚, 罗为群, 曾红春, 覃星铭, 蓝芙宁. 广南县幅岩溶区与非岩溶区土壤碳氮磷生态化学计量比空间变异分析[J]. 中国岩溶, 2018, 37(5):761-769.

    GU Jiahui, YANG Qiyong, JIANG Zhongcheng, LUO Weiqun, ZENG Hongchun, QIN Xingming, LAN Funing. Spatial variation analysis of soil carbon, nitrogen and phosphorus eco-stoichiometric ratios in karst and non-karst areas of Guangnan county, Yunnan, China[J]. Carsologica Sinica, 2018, 37(5): 761-769.
    [33] 陈秋帆, 卢琦, 王妍, 刘云根. 西南石漠化区林下土壤养分特征及差异性[J]. 中国岩溶, 2023, 42(2):290-300.

    CHEN Qiufan, LU Qi, WANG Yan, LIU Yungen. Nutrient characteristics and differences of forest soil in rocky desertification areas of Southwest China[J]. Carsologica Sinica, 2023, 42(2): 290-300.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  31
  • HTML浏览量:  6
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-23
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回