留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西南岩溶山区地下水资源评价方法对比研究——以寨底地下河流域为例

杨杨 赵良杰 潘晓东 夏日元 曹建文

杨 杨,赵良杰,潘晓东,等.西南岩溶山区地下水资源评价方法对比研究:以寨底地下河流域为例[J].中国岩溶,2022,41(1):111-123. doi: 10.11932/karst20220106
引用本文: 杨 杨,赵良杰,潘晓东,等.西南岩溶山区地下水资源评价方法对比研究:以寨底地下河流域为例[J].中国岩溶,2022,41(1):111-123. doi: 10.11932/karst20220106
YANG Yang,ZHAO Liangjie,PAN Xiaodong,et al.Comparative study on evaluation methods of groundwater resources in karst area of Southwest China: Taking Zhaidi underground river basin as an example[J].Carsologica Sinica,2022,41(01):111-123. doi: 10.11932/karst20220106
Citation: YANG Yang,ZHAO Liangjie,PAN Xiaodong,et al.Comparative study on evaluation methods of groundwater resources in karst area of Southwest China: Taking Zhaidi underground river basin as an example[J].Carsologica Sinica,2022,41(01):111-123. doi: 10.11932/karst20220106

西南岩溶山区地下水资源评价方法对比研究——以寨底地下河流域为例

doi: 10.11932/karst20220106
基金项目: 

中国地质调查局地质调查项目 DD20190326

国家自然科学基金项目 41502252

广西自然科学基金面上项目 2018GXNSFAA294015

详细信息
    作者简介:

    杨杨(1987-),女,硕士,工程师,研究方向:岩溶水循环与水资源评价。E-mail:yangyang_a@mail.cgs.gov.cn

    通讯作者:

    赵良杰(1986-),男,博士,助理研究员,研究方向:岩溶水循环与水资源评价。E-mail:zhaoliangjie@cgs.gov.cn

  • 中图分类号: P641.8

Comparative study on evaluation methods of groundwater resources in karst area of Southwest China: Taking Zhaidi underground river basin as an example

Funds: 

 DD20190326

 41502252

 2018GXNSFAA294015

  • 摘要: 西南岩溶山区地下水资源丰富,查清地下水资源量是科学管理水资源的基础,岩溶山区地下水资源量的评价方法多样,计算过程不同,进而评价结果也存在差异。本文选择寨底地下河流域为研究对象,采用四种不同的评价方法(总排泄量法、基流分割法、径流模数法、数值模型法)对流域地下水资源量进行评价,分析各方法的评价机理和流程,研究其主要影响因素,并对其适用性进行讨论。结果显示:针对西南岩溶石山地区,基流分割法简单快捷,适用于枯季地下水资源量评价,在雨季地下水资源量评价中存在一定不足;总排泄量法的评价结果较为准确,但资料获取难度大,且成本较高;数值模拟法运算高效,但需要大量的前期调查研究数据资料;径流模数法操作性较强,对岩溶山区具有较强的适用性,但参数的选择存在一定的不确定性,对评价结果影响较大。确定计算参数是水资源评价中的关键步骤,通过实测流量反推和灰色聚类法,可提高参数精度和计算效率。

     

  • 图  1  CFP模型原理示意图

    Figure  1.  Schematic diagram of CFP

    图  2  研究区含水层结构示意图

    Figure  2.  Structure diagram of aquifer in the study area

    图  3  寨底地下河流域水文地质简图

    Figure  3.  Hydrogeological map of Zhaidi underground river basin

    图  4  监测站点分布图

    Figure  4.  Distribution diagram of monitoring sites

    图  5  阳朔水文站2018年监测流量曲线和基流分割曲线

    Figure  5.  Monitoring flow curve and base flow segmentation curve of Yangshuo hydrological station in 2018

    图  6  网格剖分及剖面线位置

    Figure  6.  Grid division and profile position

    图  7  AA'剖面示意图

    Figure  7.  Diagram of AA' section

    图  8  BB'剖面示意图

    Figure  8.  Diagram of BB' section

    图  9  ZK7水位拟合曲线

    Figure  9.  Fitting curve of ZK7 water level

    图  10  G015水位拟合曲线

    Figure  10.  Fitting curve of G015 water level

    表  1  地下资源评价方法对比表

    Table  1.   Comparison of evaluation methods of underground resources

    评价方法限制因素适用条件
    总排泄量法工作量较大适用于小流域或单一时段的地下水资源评价
    基流分割法水文站点不足,不同基流分割方法计算结果差距较大,计算结果偏小适用于地下水动态变化较小,且具备水文站点的区域
    径流模数法地下水监测站点不足,参数取值具有一定主观性适用于水文地质条件清晰,且具有地下水长期监测资料的区域
    数值模拟法数据资料限制,模型结构仍需改进适用于研究程度较高,具有钻探、物探等资料的区域
    下载: 导出CSV

    表  2  监测站点2018年年度流量

    Table  2.   Annual flow in 2018 from monitoring sites

    监测站位置流量/m3s-1补给面积/km2
    G161钓岩地下河出口286.3251.92
    G0302水牛厄下降泉500.6173.89
    G0703东究下降泉365.0271.14
    G0324东究地下河出口946.2447.79
    G0445大浮地下河出口183.8594.07
    G0456菖蒲岭下降泉141.3752.64
    G0477寨底地下河出口1 737.2911.96
    下载: 导出CSV

    表  3  2018年地下水资源量计算表

    Table  3.   Calculation of groundwater resources in 2018

    子系统名称及编号含水岩组类型面积/km2径流模数/Ls-1km-2地下水资源量/万m3
    钓岩子系统Ⅰ1较纯全碳酸盐岩1.91724.630148.912
    水牛厄子系统Ⅰ2较纯全碳酸盐岩1.73623.610129.248
    次纯全碳酸盐岩1.31517.18071.220
    较纯半碳酸盐岩0.2229.8406.874
    次纯半碳酸盐岩0.0987.1602.224
    碎屑岩0.5192.3903.914
    东究西侧子系统Ⅰ3较纯全碳酸盐岩0.08323.4706.120
    次纯全碳酸盐岩0.73711.20026.038
    碎屑岩0.3172.6702.671
    东究东侧子系统Ⅰ4较纯全碳酸盐岩5.56820.480359.610
    次纯全碳酸盐岩0.97912.16037.526
    碎屑岩1.2482.67010.510
    大浮子系统Ⅰ5较纯全碳酸盐岩1.33118.56077.913
    次纯全碳酸盐岩1.37510.43045.222
    碎屑岩1.3623.18018.450
    菖蒲岭子系统Ⅰ6较纯全碳酸盐岩1.81219.290110.207
    次纯全碳酸盐岩0.82411.4509.429
    寨底子系统Ⅰ7较纯全碳酸盐岩9.14322.490648.483
    次纯全碳酸盐岩2.81810.32091.712
    碎屑岩0.0022.3600.015
    下载: 导出CSV

    表  4  寨底地下河系统水资源量

    Table  4.   Water resources of Zhaidi underground river system

    补给排泄项水资源量所占比例/%
    补给项/万m3a-1降雨入渗2 614.8282.27
    外源水补给351.8711.07
    含水层释放量211.526.66
    总补给量3 178.21100.00
    排泄项/万m3a-1岩溶管道排泄量2 642.4083.93
    含水层储存量308.549.80
    局部泉排泄量145.964.64
    水头边界49.901.59
    蒸发量1.640.05
    总排泄量3 148.6100.00
    下载: 导出CSV

    表  5  地下水资源量评价结果对比表

    Table  5.   Comparison of evaluation results of groundwater resources

    计算方法地下水资源量/万m3a-1主要影响因素
    总排泄量法2 423.45调查精度、地下水系统条件
    基流分割法1 148.49水文站控制范围、流量年内动态变化规律、分割算法
    径流模数法1 806.3地下水监测数据、水文地质参数
    数值模型法2 642.4资料精度、水文地质参数、模型结构及算法
    下载: 导出CSV
  • 卢耀如,张凤娥,刘长礼,童国榜,张云.中国典型地区岩溶水资源及其生态水文特性[J].地球学报,2006,27(5):393-402.

    LUYaoru, ZHANGFeng'e, LIUChangli, TONGGuobang, ZHANGYun. Karst water resources in typical areas of China and Their Eco-hydrological characteristics[J]. Eath Science-Journal of China University of Geosciences, 2006, 27(5):393-402.
    蒋忠诚,夏日元,时坚,裴建国,何师意,梁彬.西南岩溶地下水资源开发利用效应与潜力分析[J]. 地球学报, 2006,31(6):860-868.

    JIANGZhongcheng, XIARiyuan, SHIJian, PEIJianguo, HEShiyi, LIANGBin. The application effects and exploitation capacity of karst underground water resources in Southwest China[J].Acta Geoscientica Sinica,2006,31(6):860-868.
    陈飞,徐翔宇,羊艳,李素环,丁跃元,郦建强,李原园.中国地下水资源演变趋势及影响因素分析[J]. 水科学进展,2020,31(6): 811-819.

    CHENFei, XUXiangyu, YANGYan, LISuhuan, DINGYueyuan, LIJianqiang, LIYuanyuan. Investigation on the evolution trends and influencing factors of groundwater resources in China[J]. Advances in Water Science, 2020, 31(6): 811-819.
    AndreoB, VíasJ, DuránJ J, JiménezP, pez-GetaJ A L, CarrascoF. Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain [J]. Hydrogeology Journal,2008, 16:911-925.
    Martos-RosilloS, González-RamónA, Jiménez-GavilánP, AndreoB, DuránJ, ManceraE.Review on groundwater recharge in carbonate aquifers from SW Mediterranean (Betic Cordillera, S Spain)[J].Environmental Earth Sciences,2015, 74(12):7571-7581.
    Garcia-SolsonaE, Garcia-OrellanaJ, MasquéP, GarcésE, RadakovitchO, MayerA, EstradéS, BasterretxeaG. An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes[J].Biogeochemistry, 2010,97:211-229.
    FarfánH, CorveaJ L, deBustamante. Sensitivity analysis of APLIS method to compute spatial variability of karst aquifers recharge at the National Park of Viñales (Cuba)[J]. Advances in research in karst media, 2010:19-24.
    JeanninP Y, EichenbergerU, SinreichM, VouillamozJ, MalardA, WeberE.KARSYS: a pragmatic approach to karst hydrogeological system conceptualisation.Assessment of groundwater reservesand resources in Switzerland [J]. Environmental Earth Sciences, 2013, 69:999-1013.
    Andreas Hartmanna, Juan Antonio Barberáb, LangeJens, AndreoBartolomé. Progress in the hydrologic simulation of time variant recharge areas of karst systems-Exemplified at a karst spring in Southern Spain [J]. Advances in Water Resources,2013, 54:149-160.
    MohammadiZakieh, AlijaniFarshad, RangzanKazem. DEFLOGIC: a method for assessment of groundwater potential in karst terrains: Gurpi Anticline, southwest Iran [J]. Arabian Journal of Geosciences,2014, 7:3639-3655.
    AndreoB, BarberáJ A, MudarraM, MarinA I, Garcia-OrellanaJ, RodellasV, PerezI.A multi-method approach for groundwater resource assessment in coastal carbonate (karst) aquifers: the case study of Sierra Almijara(southern Spain)[J].Hydrogeology Journal,2018,26:41-56.
    NazariSara, AhmadiAzadeh. Non-cooperative stability assessments of groundwater resources management based on the tradeoff between the economy and the environment [J]. Joumal of Hydrology, 2019, 578:124075.
    Josue Jacob Gallegos, X HuBill, DavisHal. Erratum: Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP [J]. Hydrogeology Journal, 2013, 21:1911-1912.
    AssariAmin, MohammadiZargham. Assessing flow paths in a karst aquifer based on multiple dye tracing tests using stochastic simulation and the MODFLOW-CFP code [J]. Hydrogeology Journal,2017, 25:1679-1702.
    Martínez-SalvadorAlberto, Conesa-GarcíaCarmelo. Suitability of the SWAT model for simulating water discharge and sediment load in a karst watershed of the semiarid mediterranean basin [J]. Water Resources Management,2020, 34:785-802.
    JakadaHamza, ChenZhihua. An approach to runoff modelling in small karst watersheds using the SWAT model[J]. Arabian Journal of Geosciences,2020, 13(8):1-18.
    刘海冲.水城盆地岩溶地下水资源评价问题的研究[J].石家庄经济学院学报,1979,3:60-61.

    LIUHaichong. Study on evaluation of karst groundwater resources in Shuicheng Basin[J]. Journal of Shijiazhuang University of Economics,1979,3:60-61.
    籍傅茂.基岩丘陵山区区域地下水资源评价原则和方法的初步探讨[J]. 水文地质工程地质,1981,2:31-35.

    JIFumao. A preliminary discussion on the principles and methods of groundwater resource evaluation in bedrock hilly area [J]. Hydrogeology& Engineering Geology,1981,2:31-35.
    朱学愚,钱孝星.关于地下水资源评价中采用的给水度数值的讨论[J].工程勘察,1981,1:30-33.

    ZHUXueyu, QIANXiaoxing. A discussion on the numerical value of water supply used in groundwater resource evaluation[J]. Geotechnical Investigation & Surveying, 1981,1:30-33.
    夏日元,唐健生,朱远峰. 西南岩溶区地下水资源可持续利用对策[J].中国人口·资源与环境,2003,13(1) :81-85.

    XIARiyuan, TANGJiansheng, ZHUYuanfeng. Sustainable Utilization measures of groundwater resources in karst arwas of southwest China[J].China Population·Resources and Environment,2003, 13(1):81-85.
    何师意,冉景丞,袁道先,谢运球. 不同岩溶环境系统的水文和生态效应研究[J].地球学报,2001,22(3):265-270.

    HEShiyi , RANJingcheng,YUANDaoxian, XIEYunqiu. A Comparative Study on Hydrological and Ecological Effects in Different Karst Ecosystems[J]. Acta Geoscientia Sinica, 2001,22(3):265-270.
    何师意,周锦忠,曾飞跃. 岩溶地下河流域地下水资源评价:以湖南湘西大龙洞为例 [J].水文地质工程地质,2007,49(2):33-36.

    HEShiyi, ZHOUJinzhong, ZENGFeiyue. Assessment on the karst water resources of Dalongdong underground river catchment of Xiangxi[J].Hydrogeology& Engineering Geology, 2007, 49(2): 33-36.
    朱学愚,钱孝星,朱国荣.用数值法评价地下水资源时对水文地质勘察工作的要求[J].工程勘察,1981,3:6-9.

    ZHUXueyu, QIANXiaoxing, ZHUGuorong. Requirements for hydrogeological investigation in groundwater resource evaluation by numerical method[J]. Geotechnical Investigation & Surveying, 1981,3:6-9.
    杨杨,唐建生,苏春田,潘晓东,赵良杰.岩溶区多重介质水流模型研究进展[J].中国岩溶,2014,33(4) :419-424.

    YANGYang, TANGJiansheng, SUChuntian, PANXiaodong, ZHAOLiangjie. Research advances on multi-medium flow model for karst aquifers[J]. Carsologica Sinica, 2014, 33(4): 419-424.
    杨杨,赵良杰,苏春田,夏日元.基于CFP的岩溶管道流溶质运移数值模拟研究[J].水文地质工程地质,2019,46(4):51-57.

    YANGYang, ZHAOLiangjie, SUChuntian,XIARiyuan. A study of the solute transport model for karst conduits based on CFP[J]. Hydrogeology& Engineering Geology, 2019,46(4):51-57.
    赵良杰,夏日元,杨杨,邵景力,曹建文,樊连杰. 基于CFP的岩溶管道流数值模拟研究:以桂林寨底地下河子系统为例 [J]. 地球学报,2018,39(2):225-232.

    ZHAOLiangjie, XIARiyuan, YANGYang, SHAOJingli, CAOJianwen, FANLianjie. Research on Numerical Simulation of Karst Conduit Media Based on CFP:A Case Study of Zhaidi Karst Underground River Subsystem of Guilin[J]. Acta Geoscientica Sinica, 2018,39(2):225-232.
    杨郑秋,杨杨,邵景力,苏春田,崔亚莉,罗飞. 基于MODFLOW-CFP的岩溶水模型降雨非线性入渗补给研究 :以湖南省香花岭地区为例 [J]. 中国岩溶,2019,38(5):691-695.

    YANGZhengqiu, YANGYang, SHAOJingli, SUChuntian, CUIYali, LUOFei. Study on non-linear rainfall infiltration recharge of numerical karst water model based on MODFLOW-CFP:A case study of Xianghualing area, Hunan Province[J]. Carsologica Sinica, 2019,38(5):691-695.
    刘徽,唐仲华.基于SWAT模型的岩溶地区地下水资源评价[J].安徽农业科学,2013,10:4559-4561.

    LIUHui, TANGZhonghua. Study on Groundwater Resources in Karst Region in SWAT Model[J]. Journal of Anhui Agricultural Sciences, 2013,10:4559-4561.
    张程鹏,张凤娥,耿新新,冀俊杰,陈永康.岩溶地下河在SWAT中的概化方法:以毕节倒天河流域为例[J].中国岩溶,2020,39(5):665-672.

    ZHANGChengpeng, ZHANGFeng'e, GENGXinxin,JIJunjie, CHENYongkang. Generalization method of karst underground river in SWAT:An example of the Daotian river watershed in Bijie, Guizhou[J]. Carsologica Sinica, 2020,39(5):665-672.
    梁桂星,覃小群,崔亚莉,陈爽,黄奇波.分布式水文模型在岩溶地区的改进与应用研究[J].水文地质工程地质,2020,47(2):60-67.

    LIANGGuixing, QINXiaoqun, CUIYali, CHENShuang, HUANGQibo. Improvement and application of a distributed hydrological model in karst regions[J]. Hydrogeology & Engineering Geology, 2020,47(2):60-67.
    刘予伟,史春华,金栋梁.山丘区地下水资源评价方法综述[J].人民长江,2004,35(9):33-36.

    LIUYuwei, SHIChunhua, JINDongliang. Summarization of underground water resources evaluation methods in mountainous area[J]. Yangtze River, 2004,35(9):33-36.
    袁道先.对南方岩溶石山地区地下水资源及生态环境地质调查的一些意见[J]. 中国岩溶,2000, 19(2):103-108.

    YUANDaoxian. Aspects on the new round land and resources survey in karst rock desertification areas of south China[J]. Carsologica Sinica, 2000, 19(2): 103-108.
    王宇.岩溶区地表水与地下水资源及环境统一评价的流域边界划分研究[J].中国岩溶,2019,38(6) :823-830.

    WANGYu. Study on watershed boundary division for unified evaluation of surface water and groundwater resources and environment in karst areas[J]. Carsologica Sinica, 2019,38(6):823-830.
    任启伟.基于改进SWAT模型的西南岩溶流域水量评价方法研究[D].北京: 中国地质大学,2006.

    RENQiwei. Water Quantity Evaluation Methodology Based on Modified SWAT Hydrological Modeling in Southwest Karst Area[D].Beijing: China University of Geosciences,2006.
    BakkiyalakshmiP,StephenR W. Hydrologic modeling of flow through sinkholes located in streambeds of cane run stream, Kentucky [J]. Journal of Hydrologic Engineering, 2015, 20(5):1-12.
    LaiG Y, YiS K, LiuW, ShengY, PengX, XiongJ, PanS, WuQ. Non-point source pollution simulation in karst region based on modified SWAT Model-A case study in Henggang River Basin[J]. Hupo Kexue/Journal of Lake Sciences,2018,30(6):1560-1575.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  95
  • HTML浏览量:  27
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-12
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回

    温馨提示

    《中国岩溶》新采编系统已上线。即日起,新稿件都需采用新采编系统投稿。原采编系统已受理的投稿,审稿流程仍在原采编系统中完成。

    老用户在登录新系统时,如果密码不正确,需要点击下面的找回密码,重置一个新密码,方可登录进系统。

    《中国岩溶》原网站地址:http://zgyr-ov.karst.ac.cn/

    《中国岩溶》编辑部
    2022年4月20日