留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境DNA——洞穴生物研究中的新技术

白洁 邢迎春 高婉茹 赵亚辉

白 洁,邢迎春,高婉茹,等.环境DNA:洞穴生物研究中的新技术[J].中国岩溶,2021,40(6):1014-1020. doi: 10.11932/karst2020y48
引用本文: 白 洁,邢迎春,高婉茹,等.环境DNA:洞穴生物研究中的新技术[J].中国岩溶,2021,40(6):1014-1020. doi: 10.11932/karst2020y48
BAI Jie,XING Yingchun,GAO Wanru,et al.Environmental DNA: An emerging tool in studying cave organisms[J].Carsologica Sinica,2021,40(06):1014-1020. doi: 10.11932/karst2020y48
Citation: BAI Jie,XING Yingchun,GAO Wanru,et al.Environmental DNA: An emerging tool in studying cave organisms[J].Carsologica Sinica,2021,40(06):1014-1020. doi: 10.11932/karst2020y48

环境DNA——洞穴生物研究中的新技术

doi: 10.11932/karst2020y48
基金项目: 

国家自然科学基金项目 NSFC-31972868, 31970382

生态环境部生物多样性调查评估项目 2019HJ2096001006

中国水产科学研究院基本科研业务费 2017B001, 2020A001

详细信息
    作者简介:

    白洁(1995-),男,硕士研究生,生物学专业,主要从事环境DNA研究。E-mail:18865322993@163.com

    通讯作者:

    邢迎春(1982-),女,副研究员,研究方向:鱼类资源保护,E-mail:xingych@cafs.ac.cn

    赵亚辉(1975-),男,博士,副研究员,研究方向:鱼类多样性、演化和物种保护,E-mail:zhaoyh@ioz.ac.cn

  • 中图分类号: Q503

Environmental DNA: An emerging tool in studying cave organisms

Funds: 

 NSFC-31972868, 31970382

 2019HJ2096001006

 2017B001, 2020A001

  • 摘要: 中国洞穴数量多、分布广,洞穴生物资源丰富,传统生物多样性调查方法效率不高,受特殊环境影响而覆盖范围有限,一定程度上制约了中国洞穴生物多样性研究和保护工作的开展。环境DNA(eDNA)可通过从环境中提取洞穴生物的痕量DNA,利用PCR等技术对其多样性组成、生物量等进行定性和定量调查,将成为未来中国洞穴生物研究中使用的重要手段。文章对eDNA原理、在洞穴生物研究中的优势、目前取得的一些最新研究进展、主要工作流程和注意事项等进行评述,同时进一步分析中国开展相关研究所面临的问题,并展望eDNA在中国洞穴生物研究中的前景。

     

  • 图  1  eDNA调查洞穴生物主要流程

    Figure  1.  Major workflow in eDNA surveys of cave biodiversity

    表  1  GenBank数据库收录的中国洞穴鱼类DNA条形码统计

    Table  1.   Statistics of DNA barcodes of Chinese cavefish from GenBank

    DNA条形码涉及条鳅科洞穴鱼类种数涉及金线鲃属种数
    COI218
    16s rRNA222
    Cytb245
    D-loop218
    下载: 导出CSV
  • 李大通, 罗雁. 中国碳酸盐岩分布面积测量 [J]. 中国岩溶, 1983, 2(2): 147-150.
    王世杰, 张信宝, 白晓永. 中国南方喀斯特地貌分区纲要 [J]. 山地学报, 2015, 33(6):641-648.
    袁道先, 蒋勇军, 沈立成, 等. 现代岩溶学 [M]. 北京: 科学出版社, 2016.
    陈伟海. 洞穴研究进展综述 [J]. 地质论评, 2006, 52(6): 783-792.
    张远海, 朱德浩. 中国大型岩溶洞穴空间分布及演变规律 [J]. 桂林理工大学学报, 2012, 32(1): 20-28.
    LiuW, WynneJ J. Cave millipede diversity with the description of six new species from Guangxi, China [J]. Subterranean Biology, 2019, 30:57-94.
    GolovatchS I. Cave Diplopoda of southern China with reference to millipede diversity in Southeast Asia [J]. Zookeys, 2015, 510(510): 79-94.
    TianM-Y. A new species of the subterranean genus Oodinotrechus Uéno, 1998, from northern Guangxi, China, with additions to the generic diagnosis (coleoptera: carabidae: trechinae) [J]. Journal of Natural History, 2014, 48(33-34): 2097-2104.
    TianM, LuoX. A new species of the highly modified hypogean genus Giraffaphaenops Deuve, 2002 (Coleoptera: Carabidae: Trechinae) [J]. Zootaxa, 2015, 3911(4): 581-588.
    TianM, HuangS, WangX, et al. Contributions to the knowledge of subterranean trechine beetles in southern China’s karsts: five new genera (Insecta, Coleoptera, Carabidae, Trechinae) [J]. Zookeys, 2016, 564:121-156.
    ZhaoY, GozlanR E, ZhangC. Out of sight out of mind: current knowledge of Chinese cave fishes [J]. Journal of Fish Biology, 2011, 79(6): 1545-1562.
    MaL, ZhaoY, YangJ X. Cavefish of China [M]//White W B, Culver D C, Pipan T. Encyclopedia of caves (3rd edition). London: Academic Press, 2019: 237-254.
    NiemillerM L, BichuetteM E, ChakrabartyP, et al. Cavefishes [M]//White W B, Culver D C, Pipan T. Pipan. Encyclopedia of caves (3rd edition). London: Academic Press,2019: 227-236.
    赵亚辉, 张春光. 洞穴鱼类:概念、多样性和研究进展 [J]. 生物多样性, 2006, 14(5): 451-460.
    ParzefallJ. Cave Fishes: The consequences of the Life in Darkness [M]//Sébert P, Onyango D W, Kapoor B G. Fish life in special environments. Enfield: Science Publishers,2008: 53-81.
    MammolaS, CardosoP, CulverD C, et al. Scientists' warning on the conservation of subterranean ecosystems [J]. BioScience, 2019, 69(8): 641-650.
    MammolaS, PianoE, CardosoP, et al. Climate change going deep: The effects of global climatic alterations on cave ecosystems[J].The Anthropocene Review,2019, 6(1-2): 98-116.
    蒋志刚, 江建平, 王跃招, 等. 中国脊椎动物红色名录 [J]. 生物多样性, 2016, 24(5): 500-551.
    GoričkiŠ. Environmental DNA as a conservation tool [M]//White W B, Culver D C, Pipan T. Encyclopedia of Caves (3rd edition). London: Academic Press, 2019: 387-793.
    PedersenM W, OverballeP S, ErminiL, et al. Ancient and modern environmental DNA[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2015, 370(1660):20130383.
    OlsenG J. Microbial ecology and evolution: A ribosomal RNA approach [J]. Annual Reviews of Microbiology, 1986, 40:337-365.
    PaceN R, StahlD A, LaneD J, et al. The analysis of natural microbial populations by ribosomal RNA sequences [M]//Marshall K C. Advances in Microbial Ecology. Boston, MA: Springer US, 1986:1-55.
    WillerslevE, HansenA J, BinladenJ, et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments [J]. Science, 2003, 300(5620): 791-795.
    BhaduryP, AustenM C, BiltonD T, et al. Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes [J]. Marine Ecology Progress Series, 2006, 320:1-9.
    TaberletP, BoninA, ZingerL, et al. Environmental DNA: for biodiversity research and monitoring [M]. Oxford: Oxford University Press, 2018:9-13.
    WillerslevE, HansenA J, ChristensenB, et al. Diversity of holocene life forms in fossil glacier ice [J]. Proceedings of the National Academy of Sciences, 1999, 96(14): 8017-8021.
    FicetolaG F, MiaudC, PompanonF, et al. Species detection using environmental DNA from water samples [J]. Biology Letters, 2008, 4(4):423-425.
    李萌, 尉婷婷, 史博洋, 等. 环境DNA技术在淡水底栖大型无脊椎动物多样性监测中的应用 [J]. 生物多样性, 2019, 27(5): 480-490.
    ShokrallaS, SpallJ L, GibsonJ F, et al. Next-generation sequencing technologies for environmental DNA research [J]. Molecular Ecology, 2012, 21(8): 1794-1805.
    ThomsenP F, WillerslevE. Environmental DNA-an emerging tool in conservation for monitoring past and present biodiversity [J]. Biological Conservation, 2015, 183:4-18.
    TaberletP, CoissacE, HajibabaeiM, et al. Environmental DNA [J]. Molecular Ecology, 2012, 21(8):1789-1793.
    ValentiniA, TaberletP, MiaudC, et al. Next-Generation monitoring of aquatic biodiversity using environmental DNA metabarcoding [J]. Molecular Ecology,2016,25(4):929-942.
    EvansN T, ShireyP D, WieringaJ G, et al. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing [J]. Fisheries, 2017, 42(2): 90-99.
    GarganL M, MoratoT, PhamC K, et al. Development of a sensitive detection method to survey pelagic biodiversity using eDNA and quantitative PCR: a case study of devil ray at seamounts [J]. Marine Biology, 2017, 164(5):112-119.
    GoldbergC S, PilliodD S, ArkleR S, et al. Molecular detection of vertebrates in stream water: a demonstration using rocky mountain tailed frogs and idaho giant salamanders [J]. Plos One, 2011, 6(7): e22746.
    PedersenM W, GinolhacA, OrlandoL, et al. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa [J].Quaternary Science Reviews,2013,75:161-168.
    BoussarieG, BakkerJ, WangensteenO S, et al. Environmental DNA illuminates the dark diversity of sharks [J]. Science Advances, 2018, 4(5): eaap9661.
    FranklinT W, MckelveyK S, GoldingJ D, et al. Using environmental DNA methods to improve winter surveys for rare carnivores: DNA from snow and improved noninvasive techniques [J]. Biological Conservation, 2019, 229:50-58.
    DejeanT, ValentiniA, DuparcA, et al. Persistence of environmental DNA in freshwater ecosystems [J]. Plos One, 2011, 6(8): e23398.
    PedersenM W, RuterA, SchwegerC, et al. Postglacial viability and colonization in north America's ice-free corridor [J]. Nature, 2016, 537(7618): 45-49.
    TringeS G, RubinE M. Metagenomics: DNA sequencing of environmental samples [J]. Nature Reviews Genetics, 2005, 6(11): 805-814.
    IUCN. The IUCN red list of threatened species. Version 2020-1[J]. IUCN Red List of Threatened Species (2020), 2020.
    GoričkiŠ, StankovićD, SnojA, et al. Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus [J]. Scientific Reports, 2017, 7(1): 1-11.
    AljančičG, GoričkiŠ, NăpăruşM, et al. Endangered Proteus: combining DNA and GIS analyses for its conservation [J]. Dinaric Karst Poljes-Floods for Life, 2014, 70: 5.
    VörösJ, MártonO, SchmidtB R, et al. Surveying Europe’s only cave-dwelling chordate species (Proteus Anguinus) using environmental DNA [J]. Plos One, 2017, 12(1): e0170945.
    NiemillerM L, PorterM L, KeanyJ, et al. Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered Stygobromus (Amphipoda: Crangonyctidae) [J]. Conservation Genetics Resources, 2018, 10(2): 247-257.
    FraserC I, ConnellL, LeeC K, et al. Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica [J]. Polar Biology, 2018, 41(3): 417-421.
    MacaladyJ L, DattaguptaS, SchaperdothI, et al. Niche differentiation among sulfur-oxidizing bacterial populations in cave waters [J]. The Isme Journal, 2008, 2(6): 590-601.
    CheepthamN. Advances and Challenges in Studying Cave Microbial Diversity [M]. Cave Microbiomes: A Novel Resource for Drug Discovery. Springer. 2013: 1-34.
    TsujiS, TakaharaT, DoiH, et al. The detection of aquatic macroorganisms using environmental DNA analysis-a review of methods for collection, extraction, and detection [J]. Environmental DNA, 2019, 1(2): 99-108.
    BohmannK, EvansA, GilbertM T P, et al. Environmental DNA for wildlife biology and biodiversity monitoring [J]. Trends in Ecology & Evolution, 2014, 29(6): 358-367.
    ElenaV, JonasB, SimonJ G, et al. Novel universal primers for metabarcoding environmental DNA surveys of marine mammals and other marine vertebrates [J]. Environmental DNA, 2020, 2(4):460-467.
    HebertP D, CywinskaA, BallS L, et al. Biological identifications through DNA barcodes [J]. Proceedings of the Royal Society of London Series B: Biological Sciences, 2003, 270(1512): 313-321.
    HollingsworthM L, AndraC A, ForrestL L, et al. Selecting barcoding loci for plants: evaluation of seven candidate loci with species‐level sampling in three divergent groups of land plants[J].Molecular Ecology Resources,2009,9(2):439-457.
    BellemainE, CarlsenT, BrochmannC, et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases [J]. BMC Microbiology, 2010, 10(1): 189.
    SchochC L, SeifertK A, HuhndorfS, et al. Nuclear ribosomal internal transcribed spacer (its) region as a universal DNA barcode marker for fungi [J]. Proceedings of the National Academy of Sciences, 2012, 109(16): 6241-6246.
    RiazT, ShehzadW, ViariA, et al. Ecoprimers: inference of new DNA barcode markers from whole genome sequence analysis [J]. Nucleic Acids Research, 2011, 39(21): 145.
    BrownW M, WilsonG A C. Rapid evolution of animal mitochondrial DNA [J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(4):1967-1971.
    LatellaL. Chapter 16-Biodiversity: China [M]//White W B, Culver D C, Pipan T. Encyclopedia of caves (3rd edition). London: Academic Press, 2019: 127-135.
    赵亚辉, 张春光. 中国特有金线鲃属鱼类:物种多样性、洞穴适应、系统演化和动物地理 [M]. 北京: 科学出版社, 2009.
    TianM, HuangS, WangX, et al. Contributions to the knowledge of subterranean trechine beetles in southern China's karsts: five new genera (Insecta, Coleoptera, Carabidae, Trechinae) [J]. Zookeys, 2016, 564(3):121-156.
    陈善元, 张仁东, 李维贤, 等. 六种鱼巴亚科鱼类线粒体细胞色素b基因序列分析 [J]. 云南大学学报(自然科学版), 2003, 25(5): 453-457.
    XiaoC, LiM, LiW, et al. Mitochondrial DNA variation in two subspecies of Sinocyclocheilus as revealed by DNA sequences [J]. Journal of Yunnan University (Natural Sciences), 1998, 20(3): 218-220.
    XiaoH, ChenS Y, LiuZ M, et al. Molecular phylogeny of Sinocyclocheilus (Cypriniformes: Cyprinidae) inferred from mitochondrial DNA sequences [J]. Molecular Phylogenetics and Evolution, 2005, 36(1): 67-77.
    李雪健. 中国条鳅科洞穴鱼类的经典分类、适应演化和动物地理 [D]. 上海:上海海洋大学, 2018.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  13
  • HTML浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-07
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回

    温馨提示

    《中国岩溶》新采编系统已上线。即日起,新稿件都需采用新采编系统投稿。原采编系统已受理的投稿,审稿流程仍在原采编系统中完成。

    老用户在登录新系统时,如果密码不正确,需要点击下面的找回密码,重置一个新密码,方可登录进系统。

    《中国岩溶》原网站地址:http://zgyr-ov.karst.ac.cn/

    《中国岩溶》编辑部
    2022年4月20日