Citation: | WU Dongqiang, XING Liting, LAN Xiaoxun, MENG Qinghan, HOU Yusong, ZHAO Zhenhua, SUN Bin, YUAN Xuesheng. Pore structure characteristics of karst water-bearing media in Jinan[J]. CARSOLOGICA SINICA, 2021, 40(4): 680-688. |
[1] |
梁永平, 申豪勇, 赵春红, 等. 对中国北方岩溶水研究方向的思考与实践[J].中国岩溶,2021,40(3):363-380.
|
[2] |
XIAO Min, HAN Zenglei, XU Sen, et al. Temporal Variations of Water Chemistry in the Wet Season in a Typical Urban Karst Groundwater System in Southwest China [J]. International journal of environmental research and public health, 2020, 17(7): 2520.
|
[3] |
孙斌, 邢立亭, 彭玉明, 等. 济南十大泉群特征、形成模式及水循环差异性浅析[J].中国岩溶, 2021,40(3): 409-419.
|
[4] |
DENG Hucheng, ZHOU Wen, GUO Rui. Pore structure characteristics and control factors of carbonate reservoirs: The Middle-Lower Cretaceous formation, AI Hardy cloth Oilfield, Iraq[J]. Acta Petrologica Sinica, 2014, 30(3):801-812.
|
[5] |
ZHU Haihua, ZHANG Tingshan,ZHONG Dakang, et al. Binary pore structure characteristics of tight sandstone reservoirs[J]. Petroleum Exploration and Development,2019,46(6):1297-1306.
|
[6] |
GE Xinmin, FAN Yiren, CAO Yingchang, et al. Reservoir Pore Structure Classification Technology of Carbonate Rock Based on NMR T2 Spectrum Decomposition[J]. Applied Magnetic Resonance, 2014, 45(2):155-167.
|
[7] |
LI Zhiqing, QI Zhiyu, SHEN Xin, et al. Research on Quantitative Analysis for Nano-pore Structure Characteristics of Shale Based on NMR and NMR Cryoporometry[J]. Energy & Fuels, 2017, 31(6):5844-5853.
|
[8] |
LIU Xiangjun, XIONG Jian, LIANG Lixi. Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis[J]. Plateau Meteorology,2015,22(7):62-72.
|
[9] |
JIANG Lian, WEN Xiaotao, ZHOU Donghong, et al. The constructing of pore structure factor in carbonate rocks and the inversion of reservoir parameters[J]. Applied Geophysics, 2012, 9(2):223-232.
|
[10] |
YUE Jiwei,WANG Zhaofeng, CHEN Jinsheng,et al. Investigation of pore structure characteristics and adsorption characteristics of coals with different destruction types[J]. Adsorption Science and Technology,2019, 37(7-8):623-648.
|
[11] |
JACOB Bear, BORIS Rubinstein, LENOID Fel. Capillary Pressure Curve for Liquid Menisci in a Cubic Assembly of Spherical Particles Below Irreducible Saturation[J]. Transport in Porous Media, 2011, 89(1):63-73.
|
[12] |
Oyewole, Emmanuel, Saneifar, et al. Multi-Scale Characterization of Pore Structure in Carbonate Formations: Application to the SACROC Unit[J]. Polish Journal of Environmental Studies, 2015, 76(4):945-948.
|
[13] |
PAN JianGuo, WANG HongBin, LI Chuang, et al. Effect of pore structure on seismic rock-physics characteristics of dense carbonates[J]. Applied Geophysics, 2015, 12(1):1-10.
|
[14] |
QIN R , LI X , LIU C ,et al.Influential factors of pore structure and quantitative evaluation of reservoir parameters in carbonate reservoirs[J].Earth Science Frontiers,2015,22(1):251-259.
|
[15] |
STEPHANIE Vialle, JACK Dvorkin, GARY Mavko. Implications of pore microgeometry heterogeneity for the movement and chemical reactivity of CO2 in carbonates[J]. Geophysics, 2013, 78(5):69-86 .
|
[16] |
LI Xueyuan, CHEN Shangbin, WANG Xiaoqi, et al. Pore Structure Heterogeneity of the Xiamaling Formation Shale Gas Reservoir in the Yanshan Area of China: Evaluation of Geological Controlling Factors[J]. Acta Geologica Sinica(English Edition), 2019, 93(3): 588-603.
|
[17] |
FU Peng, HU Song, XIANG Jun, et al. Evolution of pore structure and fractal characteristics of rice husk char particles during gasification[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(13):276-281.
|
[18] |
HOU Haihai, SHAO Longyi, LI Yonghong, et al. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China[J]. Frontiers of Earth Science, 2018, 12(1):148-159.
|
[19] |
WU Hao , JI Youliang, LIU Ruie, et al. Pore structure and fractal characteristics of a tight gas sandstone: A case study of Sulige area in the Ordos Basin, China[J]. Energy Exploration & Exploitation,2018, 36(6):1438-1460.
|
[20] |
LIU Zixuan, YAN Detian, NIU Xing. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China[J]. Journal of Earth Science, 2020, 31(1):169-180.
|
[21] |
YING Liangliang, GUO Shaobin. Full-Sized Pore Structure and Fractal Characteristics of Marine-Continental Transitional Shale: A Case Study in Qinshui Basin, North China[J]. Acta Geology, 2019, 93(3):675-691.
|
[22] |
ZHANG Zeyu, WELLER Andreas. Fractal dimension of pore-space geom-etry of an Eocene sandstone formation[J]. Geophysics, 2014, 79 (6) :377-387.
|
[23] |
尹志军,盛国君,王春光. 基于压汞法的煤岩各段孔隙的分形特征[J]. 金属矿山,2011,40(9):54-57.
|
[24] |
白耀文,张刚,李春生,等. 基于压汞实验的致密油储层孔隙分形特征分析:以鄂尔多斯盆地定边油田延长组长7油层为例[J]. 桂林理工大学学报, 2020, 40(1):60-67.
|
[25] |
尹帅,谢润成,丁文龙,等. 常规及非常规储层岩石分形特征对渗透率的影响[J]. 岩性油气藏, 2017, 29(4):81-90.
|
[26] |
李传生, 祁晓凡,王雨山, 等. 我国北方典型岩溶地下水位对降水及气象指数的响应特征:以鲁中地区为例[J]. 中国岩溶, 2019, 38(5): 643-652.
|
[27] |
陈伟海,张之淦. 峰林平原区岩溶含水层特征与调蓄功能[J]. 中国岩溶,1999,18(1):3-5.
|
[28] |
唐春雷,晋华, 梁永平, 等. 娘子关泉域岩溶地下水位变化特征及成因[J]. 中国岩溶, 2020, 39(6): 810-816.
|
[29] |
叶海东,闫晋卫. 柳林泉域岩溶水强径流带的成因类型及水文地质条件分析[J]. 工程勘察, 2008,36(2):206-208.
|
[30] |
叶许春,张世涛,莫美仙,等. 昆明盆地浅层孔隙水水位动态变化特征及其影响因素[J]. 水文,2007,27(3):68-70.
|
[31] |
周荣辉. 太原市小店区一带松散岩类孔隙水特征[J]. 华北自然资源,2019,91(4):16-19.
|
[32] |
闫春淼,杜斌. 太原市地下水动态特征及各地下水系统间关系转变的研究[J]. 地下水,2006,28(6):97-100.
|
[33] |
金芳义. 汾河二库蓄水对兰村泉域岩溶水及西张盆地孔隙水影响的研究[D]. 太原:太原理工大学,2010.
|
[34] |
徐军祥,邢立亭,魏鲁峰,等. 济南岩溶水系统研究[M]. 北京:冶金工业出版社, 2012.
|