• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
WANG Wuyan, LI Qingguang. Buffering effect of chemical equilibrium of CaCO3—CO32-—HCO3-—CO2 on CO2 in freshwater carbonate lake:A case study of Baihua lake, Guizhou[J]. CARSOLOGICA SINICA, 2021, 40(4): 572-579.
Citation: WANG Wuyan, LI Qingguang. Buffering effect of chemical equilibrium of CaCO3—CO32-—HCO3-—CO2 on CO2 in freshwater carbonate lake:A case study of Baihua lake, Guizhou[J]. CARSOLOGICA SINICA, 2021, 40(4): 572-579.

Buffering effect of chemical equilibrium of CaCO3—CO32-—HCO3-—CO2 on CO2 in freshwater carbonate lake:A case study of Baihua lake, Guizhou

  • Publish Date: 2021-08-25
  • CO2 can be absorbed by water and transformed into HCO3-. This process is well known as the buffering of carbonate system,which can be quantified using the Revelle factor(R). CO2 released by terrestrial freshwater systems is an important component of the global carbon cycle. On the one hand,CO2 released by lake water is from the input of carbonate weathering products in the basin;on the other hand,the buffering effect of carbonate is an important factor regulating CO2 release of inland water. These two conclusions seem to be contradictory. In order to reveal the effect of carbonate cycling on CO2 in freshwater lakes,in this study, we investigated the variation of Revelle factor R in a stratified lake(Baihua lake)located in carbonate area,and compared to the data obtained from lakes from non-karst areas. The results show that the average of Revelle factor in the lake water is 20.1± 8.1(8.0-50.0),which is larger than 10.0(8.0-15.0)in the surface sea water and also much larger than 3.9±3.9 in lakes in non-karst areas. A higher Revelle factor means a weaker CO2 buffering capacity. The maximum value of R,46.4,occurred in the thermocline in summer,where corresponding variations of inorganic carbon concentration(2.1 mmol?L-1),ratio of total inorganic carbon to alkalinity(1.0),ratio of CO2/CO3(1.0)and pH (8.38)are well coincident with the theoretical values. This consistency indicates that chemical equilibrium of carbonate is primary factor controlling Revelle factor of lake water. Lake waters with lower pH in non-karst areas could dissolve carbonate and then raise pH and alkalinity,thus elevate the Revelle factor to the maximum value while dissolution of carbonate reaches an equilibrium. Thereafter,Revelle factor will decrease and the buffering capability resulted by the metabolism increase,regardless of carbonate precipitation due to photosynthesis or carbonate dissolution during respiration.

     

  • [1]
    Regnier P, Friedlingstein P, Ciais P, et al . Anthropogenic perturbation of the carbon fluxes from land to ocean [J]. Nature geoscience 2013, 6:597-607
    [2]
    Bianucci L, Long W, Khangaonkar T, et al. Sensitivity of the regional ocean acidification and carbonate system in Puget Sound to ocean and freshwater inputs [J]. Elem Sci Anth, 2018, 6(1): 22.
    [3]
    Egleston E S, Sabine C L, Morel F M M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity [J]. Global Biogeochem. Cycles, 2010, 24: GB1002.
    [4]
    Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades [J]. Tellus, 1957,9(1):18-27
    [5]
    Broecker W S, Takahashi T, Simpson H J, et al. Fate of fossil fuel carbon dioxide and the global carbon budget [J]. Science, 1979, 206: 409-418.
    [6]
    Sundquist E T, Plummer L N, Wigley T M L. Carbon dioxide in the ocean surface: The homogeneous buffer factor [J]. Science, 1979, 204(4398):1203-1205.
    [7]
    Hauck J, V?ker C. Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor [J]. Geophys. Res. Lett., 2015, 42: 1459-1464.
    [8]
    Howard J R, Skirrow G, House W A, et al. Major ion and carbonate system chemistry of a navigable freshwater canal [J]. Freshwater Biology, 1984, 14(5): 515-532.
    [9]
    Stets E G. Butman D. McDonald C P. et al. Carbonate buffering and metabolic controls on carbon dioxide in rivers [J]. Global Biogeochem. Cycles 2017, 31, 663-677.
    [10]
    Duvert C, Bossa M. Tyler K J,et al. Groundwater‐derived DIC and carbonate buffering enhance fluvial CO2 evasion in two Australian tropical rivers [J]. J. Geophy. Res. Biogeo. 2019, 124: 312-327.
    [11]
    Zhang T, Li J, Pu J, et al. Carbon dioxide exchanges and their controlling factors in Guijiang River, SW China [J]. Journal of Hydrology, 2019, 578: 124073.
    [12]
    Cole J J, Caraco N F, Kling G W, et al. Carbon dioxide supersaturation in the surface waters of lakes [J]. Science, 1994, 265(5178):1568-1570.
    [13]
    Tranvik L, Downing J A, Cotner J B, et al., Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnol. Oceanogr. 2009, 54 (6, part 2):2298-2314.
    [14]
    Marce R, Obrador B, Morgui J-A, et al. Carbonate weathering as a driver of CO2 supersaturation in lakes[J]. Nature geoscience, 2015, 8:107-111.
    [15]
    McDonald C P, Stets E G, Striegl R G, et al. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States [J]. Global Biogeochem. Cycles, 2013, 27:285–295, doi:10.1002/gbc.20032.
    [16]
    Weyhenmeyer G A, Kosten S, Wallin S K, et al. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs[J]. Nautre geoscience, 2015, 8:933-931.
    [17]
    Müller B, Meyer J S, G?chter R. Alkalinity regulation in calcium carbonate-buffered lakes[J]. Limnol. Oceanogr. 2016, 61:341-352.
    [18]
    Raymond P A, Cole J J. Increase in the export of alkalinity from north America’s largest river[J], Science, 2003, 301: 88-91,DOI: 10.1126/science.1083788.
    [19]
    章程,蒋忠诚,Chris G,等.岩溶IGCP国际合作30年与岩溶关键带研究展望[J].中国岩溶,2019,38(03):301-306.
    [20]
    吴泽燕,罗为群,蒋忠诚,等.土壤改良对土壤水水化学及碳酸盐岩溶蚀的CO2净消耗量的影响[J].中国岩溶,2019,(1):60-69.
    [21]
    Huang X, Hu J, Li C, et al. Heavy-metal pollution and potential ecological risk assessment of sediments from Baihua Lake, Guizhou, P.R. China [J]. International Journal of Environmental Health Research, 2009, 19(6): 405-419.
    [22]
    黎文,吴丰昌,王静,等. 河流-湖泊系统中溶解有机质的示踪及迁移[J].环境科学研究,2012,25(2):133-139.
    [23]
    李小峰,李秋华,秦好丽,等. 百花湖消落带常见植物氮磷钾营养元素含量分布特征研究[J].环境科学学报,2013,33(4):1089-1097.
    [24]
    沈威,胡继伟,谢伟芳,等.百花湖水体氮的空间分布研究[J].中国岩溶,2012,31(1):74-81.
    [25]
    张维,红枫湖、百花湖环境特征及富营养化[M]. 贵阳,贵州科技出版社,1999.
    [26]
    Tao F X. 2017. Air–water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the carbon cycle of global inland waters[J]. Acta Geochimica, 2017,36: 658-666.
    [27]
    周长松,邹胜章,朱丹尼,等.岩溶地下水样品Ca2+、HCO〖_3^-〗野外测试值与实验室测试值对比研究[J].中国岩溶,2017,36(5):684-690.
    [28]
    Jonsson A, Karlsson J, Jansson M. Sources of Carbon Dioxide Supersaturation in Clearwater and Humic Lakes in Northern Swede[J].Ecosystems, 2003,6:224-235,DOI: 10.1007/s10021-002-0200-y.
    [29]
    Wallin M, Buffam I, ?quist M, et al. Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network: concentrations and downstream fluxes [J]. J. Geophy. Res., 2010, 115: G02014.
    [30]
    Butler P J, Woakes A J. Control of heart rate by carotid body chemoreceptors during diving in tufted ducks [J]. J Appl Physiol Respir Environ Exerc Physiol. 1982, 53 (6):1405-1410.
    [31]
    吕迎春,刘丛强,王仕禄,等. 贵州喀斯特水库红枫湖、百花湖p(CO2)季节变化研究[J]. 环境科学,2007(12):2674-2681.
    [32]
    章程.岩溶区河流水化学昼夜变化与生物地球化学过程[J].中国岩溶,2015,34(1):1-8.
    [33]
    李瑞,于奭,孙平安,等.贵州茂兰板寨水域水生植物δ13C特征及光合作用固定HCO〖_3^-〗碳量估算[J].中国岩溶,2015,34(1):9-8.
    [34]
    Zeebe RE. Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M].Elsevier Oceanography Series 65,Amsterdam, 2001,(Paperback) ISBN: 0444509461
    [35]
    张陶,李建鸿,蒲俊兵,等.小球藻对岩溶水体Ca2+、HCO〖_3^-〗利用效率实验研究[J].中国岩溶,2018,37(1):81-90.
    [36]
    Talling J F. pH, the CO2 System and Freshwater Science[J]. Freshwater Reviews, 2010, 3(2):133-146.
  • Relative Articles

    [1]ZHANG Peng, GUO Fang, JIANG Guanghui, LIU Fan, JING Baokun. Changes of air environmental factors in Zengpiyan cave site and its influence on the cultural layers[J]. CARSOLOGICA SINICA, 2024, 43(5): 1007-1019. doi: 10.11932/karst20240502
    [2]HUANG Jiangxun, LI Qingguang, AN Li, DU Shuangxue, GUO Xingqiang. Buffering effect of chemical equilibrium of surface water carbonate system on acid mine drainage in small karst watershed[J]. CARSOLOGICA SINICA, 2023, 42(1): 19-28. doi: 10.11932/karst2022y20
    [3]ZHAO Guangshuai, HUANG Qibo, ZHU Yinian, LI Tengfang, PU Zhenggong. Simulation of buffering process and carbon sink effect of lime soil on sulfuric acid rain[J]. CARSOLOGICA SINICA, 2022, 41(5): 796-807. doi: 10.11932/karst20220504
    [4]CHEN Jiyu, LU Zujun, HE Qiufang, LI Qiang. Characteristics of culturable bacterial communities in karst caves with different CO2 concentrations: An example of the Xueyu cave and Shuiming cave in Chongqing[J]. CARSOLOGICA SINICA, 2020, 39(2): 264-274. doi: 10.11932/karst2020y20
    [5]WU Zeyan, LUO Weiqun, JIANG Zhongcheng, ZHANG Cheng, HU Zhaoxin, CAO Jianhua. Effects of filter sludge and organic manure soil improvement on soil hydrochemistry and net CO2 consumption of dissolution of carbonate rocks[J]. CARSOLOGICA SINICA, 2019, 38(1): 60-69. doi: 10.11932/karst20190107
    [6]HUANG Binghui, LI Qiang, FANG Junjia, CAO Jianhua, JIN Zhenjiang, PENG Wenjie, LU Xiaoxuan, LIANG Yueming. Effects of CO2 concentration gradient on carbonicanhydrase of two karst microalgae[J]. CARSOLOGICA SINICA, 2018, 37(1): 91-100. doi: 10.11932/karst20180105
    [7]ZHAO Li-hua, WU Yan-you, XIE Teng-xiang, LI Hai-tao, ZHANG Kai-yan, HANG Hong-tao. Stable carbon isotope fractionation (δ13C) of microalgae on CO2 assimilation[J]. CARSOLOGICA SINICA, 2016, 35(4): 357-362. doi: 10.11932/karst20160402
    [8]ZHANG Shao-yun, ZHOU Zhong-fa, ZHANG Qiang, XIE Ya-ting. Source of cave CO2 and its spatial attributive characteristics of Zhijin Cave in Guizhou Province[J]. CARSOLOGICA SINICA, 2016, 35(3): 307-313. doi: 10.11932/karst20160309
    [9]WANG Jing-xia, LEI Lei, YU Qing-chun. Evaluation of capacity and suitability of CO2 geological storage in carbonate formations in basins of China mainland[J]. CARSOLOGICA SINICA, 2015, 34(2): 101-108. doi: 10.11932/karst20150202
    [10]SONG Lin-hua, WEI Xiao-ning, LIANG Fu-yuan. EFFECT OF SPELEO-TOURISM ON THE CO2 CONTENT AND TEMPERATURE IN BAIYUN CAVE, LINCHENG, HEBEI[J]. CARSOLOGICA SINICA, 2003, 22(3): 230-235. doi: 10.3969/j.issn.1001-4810.2003.03.010
    [11]YAN Zhi-wei, WEI Fu-cai. SUMMARY ON THE GENESIS OF CO2 IN GROUNDWATER[J]. CARSOLOGICA SINICA, 2003, 22(2): 118-123. doi: 10.3969/j.issn.1001-4810.2003.02.007
    [12]Zhao Jingbo, Yuan Daoxian, Ma Zhanwu, Zhang Xiaolong, Du Juan. STUDY ON THE CO2 RELEASE AMOUNT AND ITS CHANGEFROM THE SOIL IN THE XI 'AN AREA[J]. CARSOLOGICA SINICA, 2000, 19(4): 309-313. doi: 10.3969/j.issn.1001-4810.2000.04.003
    [13]Jiang Zhongcheng, Jiang Xiaozhen, Lei Mingtang. ESTIMATION OF ATMOSPHERIC CO2 SINK OF KARST AREAS INCHINA BASED ON GIS AND LIMESTONE TABLET LOSS DATA[J]. CARSOLOGICA SINICA, 2000, 19(3): 212-217. doi: 10.3969/j.issn.1001-4810.2000.03.003
    [14]Liu Zaihua. CONTRIBUTION OF CARBONATE ROCK WEATHERINGTO THE ATMOSPHERIC CO2 SINK[J]. CARSOLOGICA SINICA, 2000, 19(4): 293-300. doi: 10.3969/j.issn.1001-4810.2000.04.001
    [15]Tand Can, Zhou Pinggen. THE SOIL CO2 AND ITS DRIVING ACTION ONKARSTIFICATION IN TYPICAL KARST AREA IN BEIJING[J]. CARSOLOGICA SINICA, 1999, 18(3): 213-217. doi: 10.3969/j.issn.1001-4810.1999.03.003
    [16]Song Linhua, Yang Jingrong, Lin Junshu, Wang Laihong. DYNAMICS OF ABSORBING CO2 IN THE RECOVERINGEXPERIMENT OF WEATHERED SPELEOTHEMIN YAOLIN CAVE, ZHEJIANG, CHINA[J]. CARSOLOGICA SINICA, 1999, 18(4): 297-307. doi: 10.3969/j.issn.1001-4810.1999.04.002
    [17]Zheng Leping. STUDIES ON THE ISOTOPIC COMPOSITIONS OF THESOIL CO2 AT KARST MOUNTAIN FOREST AREAS[J]. CARSOLOGICA SINICA, 1998, 17(4): 325-330.
    [18]Zhang Qiang, Zhao Shuyan, Zhao Xifang. CO2 MONITORING AND ASSESSMENTOF SHIHUA CAVE, BEIJING[J]. CARSOLOGICA SINICA, 1997, 16(4): 325-331.
    [19]He Shiyi, Xu Shengyou, Zhang Meiliang. OBSERVATION ON SOLL CO2 CONCENTRATION,HYDROCHEMISTRY, AND THEIRRELATIONSHIP WITH KARST PROCESSES[J]. CARSOLOGICA SINICA, 1997, 16(4): 319-324.
    [20]Xu Shengyou, He Shiyi. THE COO2 REGIME OF SOIL PROFILE AND ITS DRIVE TO DISSOLUTION OF CARBONATE ROCK[J]. CARSOLOGICA SINICA, 1996, 15(Z1): 50-57.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.5 %FULLTEXT: 26.5 %META: 70.9 %META: 70.9 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.3 %其他: 13.3 %China: 0.8 %China: 0.8 %Seattle: 0.1 %Seattle: 0.1 %[]: 0.0 %[]: 0.0 %三亚: 0.0 %三亚: 0.0 %上海: 15.1 %上海: 15.1 %中卫: 0.1 %中卫: 0.1 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %保定: 0.0 %保定: 0.0 %北京: 1.3 %北京: 1.3 %南京: 0.0 %南京: 0.0 %南宁: 0.1 %南宁: 0.1 %南通: 0.1 %南通: 0.1 %厦门: 0.0 %厦门: 0.0 %台州: 0.0 %台州: 0.0 %吕梁: 0.0 %吕梁: 0.0 %咸阳: 0.0 %咸阳: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.1 %天津: 0.1 %宁波: 0.0 %宁波: 0.0 %宜春: 0.0 %宜春: 0.0 %崇左: 1.2 %崇左: 1.2 %广州: 0.1 %广州: 0.1 %开封: 0.0 %开封: 0.0 %扬州: 0.0 %扬州: 0.0 %昆明: 0.1 %昆明: 0.1 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.0 %杭州: 0.0 %桂林: 0.0 %桂林: 0.0 %沈阳: 0.1 %沈阳: 0.1 %淄博: 0.0 %淄博: 0.0 %温州: 0.0 %温州: 0.0 %漯河: 0.3 %漯河: 0.3 %珠海: 0.1 %珠海: 0.1 %福州: 0.1 %福州: 0.1 %纽约: 1.2 %纽约: 1.2 %绍兴: 0.0 %绍兴: 0.0 %绵阳: 0.0 %绵阳: 0.0 %芒廷维尤: 0.2 %芒廷维尤: 0.2 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.0 %衢州: 0.0 %西宁: 3.4 %西宁: 3.4 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.7 %贵阳: 0.7 %运城: 0.3 %运城: 0.3 %邯郸: 0.1 %邯郸: 0.1 %阳泉: 0.0 %阳泉: 0.0 %驻马店: 59.4 %驻马店: 59.4 %黔南: 0.0 %黔南: 0.0 %其他ChinaSeattle[]三亚上海中卫丹东丽水保定北京南京南宁南通厦门台州吕梁咸阳嘉兴天津宁波宜春崇左广州开封扬州昆明朝阳杭州桂林沈阳淄博温州漯河珠海福州纽约绍兴绵阳芒廷维尤衡阳衢州西宁诺沃克贵阳运城邯郸阳泉驻马店黔南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1516) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return