• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 37 Issue 6
Dec.  2018
Turn off MathJax
Article Contents
ZHANG Xianqiang, LONG Huaying, LIU Tianlei, CONG Chunlei. Comparison of water absorption characteristic and water retention capacity of five epilithic mosses in the karst areas of Guizhou Province[J]. CARSOLOGICA SINICA, 2018, 37(6): 835-841.
Citation: ZHANG Xianqiang, LONG Huaying, LIU Tianlei, CONG Chunlei. Comparison of water absorption characteristic and water retention capacity of five epilithic mosses in the karst areas of Guizhou Province[J]. CARSOLOGICA SINICA, 2018, 37(6): 835-841.

Comparison of water absorption characteristic and water retention capacity of five epilithic mosses in the karst areas of Guizhou Province

  • Publish Date: 2018-12-25
  • In order to provide a theoretical basis for the water cycle and rocky desertification control of karst ecosystems, this paper studies the water retention and absorption abilities of five moss species, i.e. Erythrodontium julaceum, Barbula unguiculata, Bryum argenteum, Eurohypnum leptothollum and Racomitrium japonicum, which are commonly seen in the rocky desertification area of Puding, Guizhou Province. The results show that, the reserve mass of five epilithic mosses ranges from 0.71 t?hm-2 to 3.91 t·hm-2 , with the largest reserve of 3.91t·hm-2 for E. julaceum.The highest water retention capacity is 761.9% for R. japonicum, E. leptothollum is the second of 653.8%,and the smallest is 551.7% for B. argenteum. E. julaceum and E. leptothollum are the dominant species with the highest water retention capacity .The highest water retention rate was 38.2% for E. leptothollum, R. japonicum ia the second of 33.6% and the lowest is 15.2% for B. argenteum. The water absorption processes of the five mosses include two ways, i.e. external and internal water absorptions. There are differences in the time of water absorption and saturation for the moss species. Five species had the same water absorption dynamic reflected by the S type saturation curve. When the water content is below 25 g, the water absorption rate of the plants is directly proportional to the amount of water added. When the external water content increases to or above 25 g, the water absorption rate of the plants gradually trends to reach the maximum.

     

  • loading
  • [1]
    杨汉奎.脆弱的喀斯特环境[J].贵州科学,1989,7(1):1-10.
    [2]
    张朝晖,王智慧,祝安.黄果树喀斯特洞穴群苔藓植物岩溶的初步研究[J].中国岩溶,1996,15(3): 224-232.
    [3]
    曹建华,袁道先.石生藻类、地衣、苔藓与碳酸盐岩持水性及生态意义[J].地球化学,1999,28(3): 248-256.
    [4]
    张天汉,代玉,王智慧,张朝晖.贵州关岭县喀斯特峰丛石漠区苔藓群落生态特征[J].中国岩溶,2014,33(2):192-200.
    [5]
    陈国鹏,曹秀文,王会儒,等.白龙江干旱河谷岩生植物持水性能[J].水土保持学报,2014,28(1):102-105.
    [6]
    鲜骏仁,张远彬,胡庭兴,等.四川王朗自然保护区地被物水源涵养能力评价[J].水土保持学报,2008,22(3):47-51.
    [7]
    张远东,刘世荣,罗传文,等.川西亚高山林区不同土地利用与土地覆盖的地被物及土壤持水特征[J].生态学报,2009,29(2):627-635.
    [8]
    郭伟,文维全,黄玉梅,等.川西亚高山针阔混交林与针叶纯林苔藓凋落物层持水性能研究[J].水土保持学报,2009,23(6):240-243.
    [9]
    刘洋,张健,杨万勤,等.自然恢复过程中川西亚高山林草交错带地被物储量及持水性能研究[J].水土保持学报,2009,23(3):173-178.
    [10]
    张峰,彭祚登,安永兴,等.北京西山主要造林树种林下枯落物的持水特性[J].林业科学,2010,46(10): 6-14.
    [11]
    魏强,凌雷,张广忠,等.甘肃兴隆山主要森林类型凋落物累积量及持水特性[J].应用生态学报,2011,22(10):2589-2598.
    [12]
    张显强,刘天雷,从春蕾.贵州5种喀斯特石生藓类成土及保土生态功能研究[J].中国岩溶,2018,37(5):708-713.
    [13]
    张显强,曾建军,谌金吾,等.石漠化干旱环境中石生藓类水分吸收特征及其结构适应性[J].生态学报,2012,32(12):3902-3911
    [14]
    张显强,王世杰,孙敏.干旱和复水对喀斯特石生反叶扭口藓(Barbula fallax Hedw.)叶绿素荧光特性的影响:以贵阳市花溪区附近严重石漠化区域为例[J].中国岩溶,2014,33(1):77-81.
    [15]
    吴海辉,乙引,谢爱林,等.细枝赤齿藓(Grythrodontium leptothallum)水分吸收特征[J].贵州师范大学学报:自然科学版,2003,21(2):46-48.
    [16]
    代玉,张天汉,王智慧,等.黔滇石漠区苔藓植物物种多样性及其水土保持作用[J].江苏农业科学,2015,43(4):332-337.
    [17]
    龙朝波,张朝晖.喀斯特石漠化山区苔藓植物水分吸收特征[J].水土保持通报,2015,35(2):350-354.
    [18]
    汪文云,张朝晖.老万场金矿石灰岩与红土矿体藓类植物生物量及吸水量比较研究[J].中国岩溶,2009,28(3):0319-0323.
    [19]
    申家琛,张朝晖,王慧慧,等.贵阳喀斯特公园南石林秋季藓类植物的持水特性[J].生态与农村环境学报,2017,33(10):907-912.
    [20]
    从春蕾,刘天雷,孔祥远,等.贵州普定喀斯特受损生态系统石生藓类植物区系及物种多样性研究[J].中国岩溶,2017, 36(2):179-186.
    [21]
    Slavík B. Methods of Studying Plant Water Relations[M]. Berlin: Springer-Verlag, 1974.
    [22]
    Vitt D H, Koponen T, Norris D H. Bryophyte flora of the Huon Peninsula, Papua New Guinea. LV. Desmotheca, Groutiella, Macrocoma and Macromitrium (Orthotrichaceae, Musci) [J]. Acta Botanica Fennica, 1995,154: 1-94.
    [23]
    Vitt D H. The genus Calomnion (Bryopsida): taxonomy, phylogeny, and biogeography[J]. The Bryologist, 1995,98(3): 338-358.
    [24]
    Montagnes R J S, Bayer R J, Vitt D H. Isozyme variation in the moss Meesia triquetra (Meesiaceae) [J]. Journal of the Hattori Botanical Laboratory, 1993,74:155-170.
    [25]
    吴鹏程.苔藓植物生物学[M].北京:科学出版社,1998.
    [26]
    秦纪洪,赵利坤,孙辉,等.岷江上游干旱河谷旱地土壤斥水特性初步研究[J].水土保持学报,2012,26(1):259-263.
    [27]
    李朝阳, 田向荣, 陈军, 等. 脱水与复水过程中湿地匍灯藓的生理生化响应[J].广西植物,2009, 29(1):139-142.
    [28]
    吴楠,魏美丽,张元明.生物土壤结皮中刺叶赤藓质膜透性对脱水、复水过程的响应[J].自然科学进展,2009,19(9): 942-951.
    [29]
    Chopra R N, Kumra P K. Biology of Bryophytes[M]. New York: John Wiley and Sons, 2005: 308-317.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1944) PDF downloads(880) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return