• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 32 Issue 3
Sep.  2013
Turn off MathJax
Article Contents
YAN Ning-zhen, CHENG Yong-yi, YANG Jian-hong, QU Ming. Distribution and impact factor of soil organic carbon on topsoil in karst mountain:A case study of Beibei District of Chongqing[J]. CARSOLOGICA SINICA, 2013, 32(3): 292-298. doi: 10.3969/j.issn.1001-4810.2013.03.007
Citation: YAN Ning-zhen, CHENG Yong-yi, YANG Jian-hong, QU Ming. Distribution and impact factor of soil organic carbon on topsoil in karst mountain:A case study of Beibei District of Chongqing[J]. CARSOLOGICA SINICA, 2013, 32(3): 292-298. doi: 10.3969/j.issn.1001-4810.2013.03.007

Distribution and impact factor of soil organic carbon on topsoil in karst mountain:A case study of Beibei District of Chongqing

doi: 10.3969/j.issn.1001-4810.2013.03.007
  • Publish Date: 2013-09-25
  • Beibei district lies in the northeast of Chongqing and covers an area of 753 km2 with subtropical humid monsoon climate,parallel low hill landform and calcareous soil and yellow soil. Besides Devonian and Tertiary strata,all strata would be found in this district. Carbonate rock layers are mainly composed of the Jialingjiang group and the Feixianguan group of Triassic and the Maokou group of Permian in the area. In order to provide theoretical basis for soil improvement and land use,the distribution and impact factor of soil organic carbon (SOC) on topsoil are analyzed by means of geo-statistics on the basis of field investigation and lab analysis in the paper. The results show that,spatially,the content of SOC decreases remarkably from the surface layer to the bottom layer with the decreasing range being 35.02% and 47.12% respectively; temporarily,compared with the second soil survey conducted in 1984,the SOC content of surface,central and bottom layerall has an increasing tendency as well,with increasing range being 4.36%,31.92% and 14.74% respectively. The results of influence factor analysis show that the SOC content increases with the increase of the total nitrogen,alkaline hydrolysis nitrogen and clay particle in the soil. The SOC content in the soil that formed by carbonate rocks with clastic rocks is higher than that formed by pure carbonate rocks. The SOC increases with altitude as follows,mountain top (21.94 g/kg) > flat dam (19.53 g/kg) > trough valley (15.60 g/kg) >mountainside (13.40 g/kg). With respect to land use,the SOC content displays as woodland (26.16 g/kg) > grassy slope (21.95 g/kg)> vegetable plot (16.75 g/kg) > orchard (15.31 g/kg) > cultivated land (12.85 g/kg).Traditional tillage method is easy to lead loss of SOC. It is suggest that to increase SOC by return farmland to forests or grassland,terracing and applying more organic fertilizer in karst mountain; to strengthen carbon sequestration capacity of the farmland by no-tillage,straw returning and so on.

     

  • loading
  • [1]
    Eswaran H,Reich F,Kimble J M. Global soil carbon stocks In: Lal R,Kimble J M,Stewart B A (eds) [J]. Global Climate Change and Pedogenic Carbonates USA: Lewis Publishes,1999:15-26.
    [2]
    陈庆强,沈承德,易惟熙,等. 土壤碳循环研究进展[J].地球科学进展,1998,13( 6):555-563.
    [3]
    沈宏,曹志洪,王志明.不同农田生态系统土壤碳库管理指数的研究[J].自然资源学报,1999,14(3):206-211.
    [4]
    刘允芬.农业生态系统碳循环研究[J].自然资源学报,1995,10(1):1-8.
    [5]
    张华,张甘霖,漆智平,等.热带地区农场尺度土壤质量现状的系统评价[J].土壤学报,2003,40(2):186-193.
    [6]
    Dalal R C,Chan K Y. Soil organic matter in rain fed cropping systems of the Australian cereal belt[J].Australian Journal of Soil Research,2001,39:435-464.
    [7]
    潘根兴.中国土壤有机碳、无机碳库量研究[J].科技通报,1999,15(5): 330-332.
    [8]
    王绍强,周成虎,李克让.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5): 533-544.
    [9]
    Degryze S,Six J,Paustian K,et al. Soil organic carbon pool changes following landuse conversions[J].Global Change Biology,2004,10(7):1120-1132.
    [10]
    重庆市北碚区土壤普查办公室.北碚土壤[M].1984:87-90.
    [11]
    中国科学院南京土壤研究所编.中国土壤[M].北京:科学出版社,1978.
    [12]
    刘世权,高丽丽,蒲玉林,等. 西藏土壤有机质和氮素状况及其影响因素分析[J].水土保持学报,2001,18(6):54-57.
    [13]
    黄昌勇.土壤学[M].北京:中国农业出版社.2000.
    [14]
    周 莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展,2005,20(1):99-105.
    [15]
    曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,1(1): 37-44.
    [16]
    蒋勇军,袁道先,章程,等.典型岩溶农业区土地利用变化对土壤性质的影响[J].地理学报,2005,60(5):751-760.
    [17]
    孙承兴,王世杰,刘秀明,等.碳酸盐岩风化壳岩-土界面地球化学特征及其形成过程——以贵州花溪灰岩风化壳剖面为例[J].矿物学报,2002,22(2):126-132.
    [18]
    冯志刚,王世杰,孙承兴,等.岩溶地区土状堆积物物质来源判别的实用指标——粒度分布特征[J].中国岩溶,2002,21(2):73-78.
    [19]
    王世杰,季宏兵,欧阳自远,等.碳酸盐岩风化成土作用的初步研究[J].中国科学,1999,29(5):441-449.
    [20]
    Williams P W.Karst terrains: environmental changes and human impact[J]. Catena Supplement,1993,25(suppl.):268.
    [21]
    Jobbagy E G,Jackson R B. 2000.The vertical distribution soil organic carbon and its relation to climate and vegetation[J]. Ecol. Appl,10(2):423-436.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1820) PDF downloads(1117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return