• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 32 Issue 3
Sep.  2013
Turn off MathJax
Article Contents
HUANG Qi-bo, QIN Xiao-qun, LIU Peng-yu, TANG Ping-ping. Analysis on tablets dissolution rate and carbon sink under different vegetation in north China karst area: A case study of Fenyang,Shanxi Province[J]. CARSOLOGICA SINICA, 2013, 32(3): 258-265. doi: 10.3969/j.issn.1001-4810.2013.03.003
Citation: HUANG Qi-bo, QIN Xiao-qun, LIU Peng-yu, TANG Ping-ping. Analysis on tablets dissolution rate and carbon sink under different vegetation in north China karst area: A case study of Fenyang,Shanxi Province[J]. CARSOLOGICA SINICA, 2013, 32(3): 258-265. doi: 10.3969/j.issn.1001-4810.2013.03.003

Analysis on tablets dissolution rate and carbon sink under different vegetation in north China karst area: A case study of Fenyang,Shanxi Province

doi: 10.3969/j.issn.1001-4810.2013.03.003
  • Publish Date: 2013-09-25
  • The study area,the Mapao spring,is located in southwest of the Jinzhong basin,Shangxi Province. The Mapao spring catchment has an area of 212.06 km2. Annual air temperature and precipitation in the study area average in 11.11 ℃ and 444.44 mm and the elevation ranges from 1 100 m to 1 900 m,decreasing from west to east and from north to south. The strata exposed in the study area are primarily carbonate rocks (limestone and dolomite) of the Cambrian-Ordovician system. By means of comparison dissolution experiment under different vegetation conditions,testing analysis on the contents of soil organic carbon and soil inorganic carbon,and field measurement for the concentration of soil CO2 and moisture content,the features of the dissolution rate and its impact factors in semiarid conditions in north China are revealed as follows. (1) The tablets dissolution rate,obvious different under different vegetation conditions,is the largest in forest land with the value of 0.551 1 mg/(cm2?a),which is 2.13 times,2.16 times higher than that under shrub conditions and meadow land respectively. This result indicates that carbonate dissolution rate has an increasing tendency along with the positive succession of vegetation. (2) The tablets dissolution rate is mainly affected by soil organic carbon,soil inorganic carbon,soil moisture,but slightly affected by the soil CO2 concentration. The soil organic carbon content and soil moisture is positive related with the tablets dissolution rate,the soil inorganic carbon content is negatively related with the tablets dissolution rate. So,high levels of inorganic carbon can lead to the weight of some tablets increase instead of decrease after a year’s corrosion,which results in the tablets dissolution rate becomes slower. (3) The karst carbon sink intensity,i.e. 1.815 tCO2/(km2?a),calculated in light of the average dissolution rate in forest land and shrub land as well as grassland is smaller in comparison with the former figure,i.e. 8.69 tCO2/(km2?a),calculated in accordance with hydrochemistry-runoff method. This means that the amount of karst carbon sink being calculated by means of dissolution method is likely to be smaller than the actuality.

     

  • loading
  • [1]
    章程.不同土地利用下的岩溶作用强度及其碳汇效应[J].科学通报,2011,56(26):2174-2180.
    [2]
    Games I. International comparative measurements of surface solution by means standard limestone tablets. RazpraveⅣ. Razprave Saza,1985,ⅩⅩⅥ: 361-386.
    [3]
    龚自珍,黄庆达.碳酸盐岩岩块野外溶蚀速率试验[J].中国岩溶,1984,12(3):212-214.
    [4]
    袁道先,蔡桂鸿.岩溶环境学[M].北京:重庆出版社,1988.
    [5]
    刘再华,吴孔运,汪进良,等.非岩溶水中碳酸盐岩试块的侵蚀速率及其控制因素[J].地球化学,2006,35(1):103-110.
    [6]
    章典,师长兴.青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J].地质学报,2002,76(4):566-570.
    [7]
    Zhang D D,Fischer H,Bauer B,et al. Field tests of limestone dissolution rates in karstic Mt. Krauterin,Austria[J]. Cave and Karst Sciences,1995,21(2):101-104.
    [8]
    唐健生,夏日元,邹胜章,等.塔里木盆地西北缘野外溶蚀试验研究[J].中国岩溶,2004,23(3):234-237.
    [9]
    李恩香,蒋忠诚,曹建华,等. 广西弄拉岩溶植被不同演替阶段的主要土壤因子及溶蚀率对比研究[J].生态学报,2004,24(6):1131-1139.
    [10]
    许文强,陈曦,罗格平.土壤碳循环研究进展及干旱区土壤碳循环研究展望[J].干旱区地理,2011,34(4):614-620.
    [11]
    刘再华.岩溶作用及其碳汇强度计算的“入渗—平衡化学法”——兼论水化学径流法和溶蚀试片法[J].中国岩溶,2011,30(4):379-382.
    [12]
    梁永平,王维泰,段光武. 鄂尔多斯盆地周边地区野外溶蚀试验结果讨论[J].中国岩溶,2007,26(4):315-320.
    [13]
    刘卫国,宁有丰,安芷生,等. 黄土高原现代土壤和古土壤有机碳同位素对植被的响应[J].中国科学(D)辑,2002,32(10):830-836.
    [14]
    张君,宫渊波,王巧红. 土壤碳现状及其对全球气候变化的响应[J]. 四川林业科技,2005,26(5):56-61.
    [15]
    章程,谢运球,吕勇,等. 不同土地利用方式对岩溶作用的影响——以广西弄拉峰丛洼地岩溶系统为例[J]. 地理学报,2006,61(11):1181-1188.
    [16]
    曾骏,郭天文,包兴国,等.长期施肥对土壤有机碳和无机碳的影响[J].中国土壤与肥料,2008(2):11-14.
    [17]
    杨黎芳,李贵桐.土壤无机碳研究进展[J]. 土壤通报,2011,42(4):986-990.
    [18]
    Pan G,Guo T.Pedogenic Carbonate of Aridic Soil in China and its Significance in Carbon Sequestration in Terrestrial Systems[C]∥Lal R,Kimble J M,Eswaran H,et al. Global Climate Change and Pedogenic Carbonates . Florida: Lewis Publishers,2000:135-147.
    [19]
    杨黎芳,李贵桐,李保国.土壤发生性碳酸盐碳稳定性同位素模型及其应用[J]. 地球科学进展,2006 9.21(9):973-981.
    [20]
    姚长宏,将忠诚,袁道先.西南岩溶地区植被喀斯特效应[J].地球学报,2001,22(2):159-164.
    [21]
    潘根兴,曹建华,何师意. 岩溶土壤系统对空气CO2的吸收及其对陆地系统碳汇的意义——以桂林丫吉村岩溶试验场的野外观测和模拟实验为例[J]. 地学前缘,2000,7(4):580-587.
    [22]
    Cerling T E,Solomon D K,Quade J,et al. On the composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta,1991,55: 3403-3405.
    [23]
    Cerling T E. The stable isotope composition ofmodern soil carbonate and its relationship to climate[J].Earth and Planetary ScienceLetter,1984,71: 229-240.
    [24]
    Nordt L C,Wilding L P,Hallmark C T,et al. Carbon isotope composition of soil carbonates and their use in studying pedogenesis [C]∥Yamasaki S,Boutton TW,eds. Mass Spectrometry of Soils. New York: MarcelDekker Inc,1996: 133-154.
    [25]
    Mermut A R,Amoundson R,Cerling T E. The use of stable isotopes in studying carbonate dynamics in soils[C]∥Lal R,Kimble J,Eswaran H,eds. Global Climate Change and Pedogenic Car bonates. Florida: LewisPublishers,2000: 65-85.
    [26]
    袁道先,刘再华.碳循环与岩溶地质环境[M].北京:科学出版社,2003:97-99.
    [27]
    袁道先.“岩溶作用与碳循环”研究进展[J]. 地球科学进展,1999,14(5):425-431.
    [28]
    袁道先,蒋忠诚. IGCP379“岩溶作用与碳循环”在中国的研究进展[J].水文地质与工程地质,2000,27(1):49-51.
    [29]
    曹建华,周莉,杨慧,等. 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J]. 第四纪研究,2011,31(3):431-437.
    [30]
    蓝芙宁,王文娟,覃小群,等.土地利用和覆被变化对岩溶区土壤CO2浓度的影响[J].中国岩溶,2011,30(4):449-455.
    [31]
    蒋忠诚,蒋小珍,雷明堂. 运用GIS和溶蚀试验数据估算中国岩溶区大气CO2的汇[J].中国岩溶,2000,19(3):212-217.
    [32]
    徐胜友,蒋忠诚. 我国岩溶作用与大气温室气体源汇关系的初步估算[J].科学通报,1997,42(9):953-956.
    [33]
    蒋忠诚,袁道先,曹建华,等.中国岩溶碳汇潜力研究[J]. 地球学报,2012,33(2):129-134.
    [34]
    袁道先,章 程. 岩溶动力学的理论探索与实践[J]. 地球学报,2008,29(3):355-365.
    [35]
    李为,余龙江,周蓬蓬,等. 西南岩溶区土壤微生物生态作用的初步研究[J].水土保持学报,2004,18(3): 112-114.
    [36]
    Yuan Daoxian. On the karst ecosystem[J]. Acta Geologica Sinica (English Edition),2001,75(3): 336-338.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1838) PDF downloads(1506) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return