• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 32 Issue 1
Mar.  2013
Turn off MathJax
Article Contents
CHEN Yan mei, CHEN Zhi hua, YU Kai bing. To identify the recharge conditions of karst groundwater in mining area by means of groundwater table and water temperature data: A case in Makeng iron mine, Fujian[J]. CARSOLOGICA SINICA, 2013, 32(1): 64-72. doi: 10.3969/j.issn.1001-4810.2013.01.010
Citation: CHEN Yan mei, CHEN Zhi hua, YU Kai bing. To identify the recharge conditions of karst groundwater in mining area by means of groundwater table and water temperature data: A case in Makeng iron mine, Fujian[J]. CARSOLOGICA SINICA, 2013, 32(1): 64-72. doi: 10.3969/j.issn.1001-4810.2013.01.010

To identify the recharge conditions of karst groundwater in mining area by means of groundwater table and water temperature data: A case in Makeng iron mine, Fujian

doi: 10.3969/j.issn.1001-4810.2013.01.010
  • Received Date: 2013-01-24
  • Publish Date: 2013-03-25
  • On the basis of ascertained hydrogeology conditions, the regime of karst groundwater recharge under dewatering conditions in mining area is found out by means of groundwater table and water temperature data.The aquifer, recharged mainly by precipitation infiltrating water, is composed of the Chuanshan group limestone in the Carboniferous system and the Qixia group limestone in the Permian system. The infiltrating water increased because of the mining activity that exposing some caves, leading fissures by collapse in goaf, disturbing of the Quaternary system sediments and blocking of gullies. Fault fracture zone turns the Wenbishan group argillaceous sandstone of the Permian system into aquifer with good aquosity and transmissibility, which leading to the fissure water in the overlying Jiafu group sandstone recharging the karst groundwater via the Xiaoniangkeng fault and F3 fault. The river water in the Ximahe recharges karst groundwater by seepage along the cross part of the riverbed and the F1 fault. The hypothermia water in the deep granite also entering the pit along the F1 and F10 faults.

     

  • loading
  • [1]
    刘白宙.焦作矿区地下水位动态变化特征研究[J].工程勘察,2011(7):39-43.
    [2]
    郝爱兵,李亚民,郑跃军,等.利用地下水位监测资料分析水文地质条件的实例研究——新疆奎屯河流域南洼地[J].水文地质工程地质,2008(4):27-30.
    [3]
    吴章锟.对矿区地下水动态观测工作的一些认识[J].水文地质工程地质,1981(3):13-17.
    [4]
    赵玉婷,张征,吕连宏,等.基于地下水多变量空间聚类分析的变异性评价[J].地球科学与环境学报,2009,31(1):79-84.
    [5]
    Healy R W, Cook P G. Using ground water levels to estimate recharge[J]. Hydrogeology Journal, 2002(1):91-109.
    [6]
    Tedd K M, Misstear B D R, Coxon C. Hydrogeological insights from groundwater level hydrographs in SE Ireland[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2012, 45:19-30.
    [7]
    Anderson M P. Heat as a ground water tracer [J]. Ground water, 2005(6):951-968.
    [8]
    Silliman S, Robinson R. Identifying Fracture Interconnections Between Boreholes Using Natural Temperature Profiling: I. Conceptual Basis[J]. Groundwater,1989(3):393-402.
    [9]
    张文慧.福建马坑铁矿地下水位动态特征研究[J].金属矿山,2009(3):27-30.
    [10]
    张琦.降雨条件下饱和-非饱和土坡的稳定分析[D].兰州理工大学,2007.
    [11]
    王心义,单智勇.岩溶裂隙型矿区水害防治技术及水资源综合利用[M].北京:煤炭工业出版社,2008.
    [12]
    陈跃升.复杂岩溶矿区降水开采条件下的地表水渗漏定量评价[J].金属矿山,2008(12):42-45.
    [13]
    龙岩地区地方志编纂委员会.龙岩地区志(第二卷)[M].上海:上海人民出版社,1992,10.
    [14]
    熊亮萍,胡圣标,汪缉安,等.福建省西部大地热流值[J].地质科学,1993(1):96-101.
    [15]
    张慧,郑金龙.福建马坑铁矿主要含水层水化学特征与突水水源的识别[J].有色金属(矿山部分),2010(2):20-24.
    [16]
    周志芳,王锦国.河流峡谷区地下水温度异常特征分析[J].水科学进展,2003,14(1):62-66.
    [17]
    连英丽,张光辉,聂振龙,等.西北内陆张掖盆地地下水温度变化特征及其指示意义[J].地球学报,2011,32(2):195-203.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2486) PDF downloads(1870) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return