• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 32 Issue 1
Mar.  2013
Turn off MathJax
Article Contents
YAN Hao, LIU Zai hua, DENG Gui ping, SUN Hai long, ZHANG Jin liu. Origin of the tufa at Jiuzhaigou scenic spot in Sichuan[J]. CARSOLOGICA SINICA, 2013, 32(1): 15-22. doi: 10.3969/j.issn.1001-4810.2013.01.003
Citation: YAN Hao, LIU Zai hua, DENG Gui ping, SUN Hai long, ZHANG Jin liu. Origin of the tufa at Jiuzhaigou scenic spot in Sichuan[J]. CARSOLOGICA SINICA, 2013, 32(1): 15-22. doi: 10.3969/j.issn.1001-4810.2013.01.003

Origin of the tufa at Jiuzhaigou scenic spot in Sichuan

doi: 10.3969/j.issn.1001-4810.2013.01.003
  • Received Date: 2012-11-30
  • Publish Date: 2013-03-25
  • Jiuzhaigou is well known for its unique and gorgeous scenery. As a key factor of the landscape, tufa there has high tourist value and scientific value. The hydrochemistry, stable hydrogen and oxygen isotope (δD and δ18O) in some key water samples and stable carbon isotope (δ13C) in dissolved inorganic carbon (DIC) as well as modern tufa are examined to understand the origin of the tufa and especially the CO2 needed for the formation of the tufa at Jiuzhaigou, Sichuan. It is found that, (1) water of Jiuzhaigou is supplied by atmospheric precipitation; (2) the concentrations of HCO3- and Ca2+ in the water of Jiuzhaigou, originated from the dissolution of carbonate rock by soil CO2, are low; (3) according to the source of CO2, the tufa at Jiuzhaigou is meteor gene or supergene; (4) the large fractionation of carbon isotope between modern tufa and DIC at pearl shoal suggests that photosynthesis of algae there played important role in the tufa deposition.

     

  • loading
  • [1]
    邓贵平.九寨沟世界自然遗产地旅游地学景观成因与保护研究[D].成都:成都理工大学,2011.
    [2]
    杨俊义.九寨沟黄龙地区景观钙华的特征及成因探讨[D].成都:成都理工大学,2004.
    [3]
    周绪纶,刘民生.九寨沟早期钙华体的岩溶作用与湖瀑景观的形成[J].四川地质学报,2012,32(3):333-338.
    [4]
    Florsheim J L, Ustin S L, Tang Y, et al. Basin-scale and travertine dam-scale controls on fluvial travertine, Jiuzhaigou, southwestern China[J]. Geomorphology, 2012, doi: 10.1016/j.geomorph.2012.10.016.
    [5]
    Liu Z, Svensson U, Dreybrodt W, et al. Hydrodynamic control of inorganic calcite precipitation in Huanglong ravine, China: field measurements and theoretical prediction of deposition rates[J]. Geochimica et Cosmochimica Acta, 2005, 59(15): 3087-3097.
    [6]
    Lu G, Zheng C, Donahoe R J, et al. Controlling processes in a CaCO3 precipitating stream in Huanglong Natural Scenic District, Sichuan, China[J]. Journal of Hydrology, 2000,230:34-54.
    [7]
    刘再华,袁道先,何师意,等.四川黄龙沟景区钙华的起源和形成机理研究[J].地球化学,2003,32(1):1-10.
    [8]
    郭建强,彭东,曹俊,等.四川九寨沟地貌与第四纪地质[J].四川地质学报,2000,20(3):183-192.
    [9]
    Wigley T M L. WATSPEC: a computer program for determining equilibrium speciation of aqueous solutions[J]. Br Geomorphol Res Group Tech Bull,1977,20:1-48.
    [10]
    Yan H, Sun H, Liu Z. Equilibrium vs. kinetic fractionation of oxygen isotopes in two low-temperature travertine-depositing systems with differing hydrodynamic conditions at Baishuitai, Yunnan, SW China[J]. Geochimica et Cosmochimica Acta,2012,95:63-78.
    [11]
    尹观,范晓,郭建强,等.四川九寨沟水循环系统的同位素示踪[J].地理学报,2000,55(4):487-494.
    [12]
    尹观,倪师军,张其春.氘过量参数及其水文地质学意义——以四川九寨沟和冶勒水文地质研究为例[J].成都理工学院学报,2001,28(3):251-254.
    [13]
    甘建军,刘民生,黄润秋,等.九寨沟核心景区水循环系统研究[J].水文地质工程地质,2010,37(1):34-39.
    [14]
    周长艳,李跃清,彭俊.九寨沟、黄龙风景区的降水特征及其变化[J].资源科学,2006,28(1):113-119.
    [15]
    王海静,张金流,刘再华.四川黄龙降水氢、氧同位素对气候变化的指示意义[J].中国岩溶,2012,31(2):25-30.
    [16]
    晏浩,刘再华.层状钙华及其地球化学指标的古气候/环境意义[J].第四纪研究,2011,31(1):88-95.
    [17]
    Ford T D, Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth Science Review, 1996,41:117-175.
    [18]
    Pentecost A. Travertine [M]. Berlin-Heidelberg: Springer-Verlag,2005:11-12.
    [19]
    Liu Z, Zhang M, Li Q, et al. Hydrochemical and isotope characteristics of spring water and travertine in the Baishuitai area (SW China) and their meaning for paleoenvironmental reconstruction[J]. Environmental Geology, 2003,44:698-704.
    [20]
    Pentecost A. The Quaternary travertine deposits of Europe and Asia Minor[J]. Quaternary Science Review, 1995,14:1005-1028.
    [21]
    刘再华,袁道先.我国典型表层岩溶系统的地球化学动态特征及其环境意义[J].地质论评,2000,46(3):324-327.
    [22]
    Doctor D H, Kendall C, Sebestyen S D, et al. Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from aheadwater stream[J]. Hydrological Processes. 2008,22:2410-2423.
    [23]
    Hori M, Kawai T, Matsuoka J, et al. Intra-annual perturbations of stable isotopes in tufas: effects of hydrological processes[J]. Geochimica et Cosmochimica Acta,73:1684-1695.
    [24]
    Sun H. and Liu Z. (2010) Wet-dry seasonal and spatial variations in the δ13C and d18O values of the modern endogenic travertine at Baishuitai, Yunnan, SW China and their paleoclimatic and paleoenvironmental implications[J]. Geochimica et Cosmochimica Acta, 74:1016-1029.
    [25]
    Zhang J, Quay P D, Wilbur D O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta, 1995,59(1):107-114.
    [26]
    Deines P, Langmuir D, Harmon R S. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters[J]. Geochimica et Cosmochimica Acta, 1974, 38:1147-1164.
    [27]
    Dreybrodt W. Processes in Karst Systems[M]// Physical Environment. Heidelberg, Springer-Verlag, 1988:140-182.
    [28]
    Skidmore M, Sharp M, Tranter M. Kinetic isotopic fractionation during carbonate dissolution in laboratory experiments: implications for detection of microbial CO2 signatures using δ13C-DIC[J]. Geochimica et Cosmochimica Acta, 2004,68(21):4309-4317.
    [29]
    Inskeep W P, Bloom P R. Kinetics of calcite precipitation in the presence of water-soluble organic ligands[J]. Soil Science Society of America Journal,1986,50:1167-1172.
    [30]
    Lebron I, Suarez D L. Calcite nucleation and precipitation kinetics as affected by dissolved organic matter at 25℃ and pH>7.5 [J]. Geochimica et Cosmochimica Acta, 1996, 60(15): 2765-2776.
    [31]
    Lebron I, Suarez D L. Kinetics and mechanisms of precipitation of calciteas affected by pCO2 and organic ligands at 25℃[J]. Geochimica et Cosmochimica Acta, 1998,62(3):405-416.
    [32]
    Hoch A R, Reddy M M, Aiken G R. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):61-72.
    [33]
    Lin Y P, Singer P C, Aiken G R. Inhibition of calcite precipitation by natural organic material: kinetics, mechanism, and thermodynamics[J]. Environ Science & Technology, 2005, 39(17): 6420-6428.
    [34]
    李强,靳振江,孙海龙.现代藻类碳酸钙沉积试验及其同位素不平衡现象[J].中国岩溶,2005,24(4):261-264.
    [35]
    Romanek C S, Grossman E L, Morse J W. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta,1992,56:419-430.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2773) PDF downloads(2077) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return