• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 32 Issue 1
Mar.  2013
Turn off MathJax
Article Contents
JIANG Zhong cheng, QIN Xiao qun, CAO Jian hua, HE Shi yi, ZHANG Cheng, ZHANG Qiang. Significance and carbon sink effects of karst processes in global carbon cycle: Also reply to “Discussion on article ‘Calculation of atmospheric CO2 sink formed in karst processes of karst divided regions in China’ ”[J]. CARSOLOGICA SINICA, 2013, 32(1): 1-6. doi: 10.3969/j.issn.1001-4810.2013.01.001
Citation: JIANG Zhong cheng, QIN Xiao qun, CAO Jian hua, HE Shi yi, ZHANG Cheng, ZHANG Qiang. Significance and carbon sink effects of karst processes in global carbon cycle: Also reply to “Discussion on article ‘Calculation of atmospheric CO2 sink formed in karst processes of karst divided regions in China’ ”[J]. CARSOLOGICA SINICA, 2013, 32(1): 1-6. doi: 10.3969/j.issn.1001-4810.2013.01.001

Significance and carbon sink effects of karst processes in global carbon cycle: Also reply to “Discussion on article ‘Calculation of atmospheric CO2 sink formed in karst processes of karst divided regions in China’ ”

doi: 10.3969/j.issn.1001-4810.2013.01.001
  • Received Date: 2013-01-10
  • Publish Date: 2013-03-25
  • Atmospheric CO2 can be absorbed and dissolved in water among karst processes, not only occurred in the carbonate rock area but also in all other rock areas of the global continent. Therefore, the previous calculation data of the karst carbon cycle based on the carbonate area is less and should be calculated again based on all river basins in the world. Besides the dissolved inorganic carbon of the rivers into oceans, the carbon sink of karst processes can be formed in particulate organic carbon of waters deposited by aquatic vegetation and the karst soil organic carbon etc. many carbon sequestered fashions. Among them, only the particulate organic carbon of waters deposited by aquatic vegetation absorbed from bicarbonate ions can reach about 0.5 Gt. The ecological rehabilitation can promote the organic carbon fixed in karst soils and inorganic carbon sink of water in the basin. As a result, the treatment engineering of the rocky desertification in southwest China at least can raise karst carbon sink 0.2 to 0.3 Gt. If the carbon sequestered technology in karst processes is considered and applied in ecological rehabilitation of the world, the global carbon sink effects should be very evident.

     

  • loading
  • [1]
    Ferris F G, Wiese R G, Fyfe W S. Precipitation of carbonate minerals by micro organisms: implications for silicate weathering and the global carbon dioxide budget[J]. Geimicrobiology journal,1994,10:66-75.
    [2]
    Allegre C J, Schneider S H. The evolution of the Earth[J]. Scientific American,1994,(1):23-31.
    [3]
    Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle: a test of our knowledge of earth as a system[J]. science, 2000, 290, 291-296.
    [4]
    Ford D C, Paul Williams. Karst geomorphology and hydrology[M]. Unwin Hyman LTD. 1989.
    [5]
    Yoshimura K, Inokura Y. The geochemical cycle of carbon Dioxide in a carbonate rock area, Akiyoshi-dai plateau, yamaguchi, Southwestern, Janpan[C]// proceedings of 30th International Geological Congress, 1997, 24:114-126.
    [6]
    Yuan D. The carbon cycle in karst[J]. Geomorph N F, Suppl.–Bd.1997,108:91-102.
    [7]
    刘再华,Wolfgang Dreybrodt,王海静.一种由全球水循环产生的可能重要的CO2汇[J].科学通报,2007,52(20):2418-2422.
    [8]
    Curl R L. Carbon shifted but not sequestered[J]. Science, 2012, 335 (6069):655.
    [9]
    Wigley T M L, Schimel D S. The carbon cycle[M]. Cambridge: Cambridge University Press, 2000: 9-10.
    [10]
    Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Sci Rev, 2010, 99:162-172.
    [11]
    蒋忠诚,覃小群,曹建华,等.中国岩溶作用产生的大气CO2碳汇的分区计算[J].中国岩溶,2011,30(4):363-367.
    [12]
    张之淦.对《中国岩溶作用产生的大气CO2碳汇分区估算》一文的商榷[J].中国岩溶,2012,31(3):339-343.
    [13]
    Liu Zai hua, Dreybrodt W, Liu H. Atmospheric CO2 sink: silicate weathering or carbonate weathering? [J]. Applied Geochemistry, 2011. 26:292-294.
    [14]
    覃小群,刘朋雨,黄奇波,等.珠江流域岩石风化作用消耗大气/土壤CO2量的估算[J].地球学报,2013,34(3):276-282.
    [15]
    Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chem Geol,1999,159:3-30.
    [16]
    Blum J D, Gazis C A, Jacobson A D, et al. Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystal line Series[J]. Geology, 1998, 26:411-414.
    [17]
    刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报,2012,57(2-3):95-102.
    [18]
    吴卫华,郑洪波,杨杰东,等.中国河流流域化学风化和全球碳循环[J].第四纪研究, 2011. 31(3):397-407.
    [19]
    Hu H, Boisson-Dernier A, Israelsson Nordstrm M, et al. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movement singuardcells [J]. Nature Cell Biology, 2010, 12: 87-93.
    [20]
    吴沿友,邢德科,刘莹.植物利用碳酸氢根离子的特征分析[J].地球与环境, 2011, 39(2): 273-277.
    [21]
    Montety V de, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011,283:31-43.
    [22]
    张强.岩溶地质碳汇的稳定性——以贵州草海地质碳汇为例[J].地球学报, 2012, 33(6): 947-952.
    [23]
    Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget[J]. Eco-systems,2007,10:171-184.
    [24]
    Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogechem Cycle, 1996,10:23-41.
    [25]
    陶贞,高全洲,姚冠荣.增江流域河流颗粒有机碳的来源、含量变化及输出通量[J].环境科学学报, 2004, 24:789-795.
    [26]
    章程.岩溶作用时间尺度与碳汇稳定性[J].中国岩溶,2011,30(4):368-371.
    [27]
    Schwartzman D W, Volk T. Biotic enhancement of weathering and the habitability of earth[J]. Nature,1989,340:457-460.
    [28]
    章程.不同土地利用条件下碳酸盐岩溶蚀速率及其碳汇效应[j].科学通报,2011,56(26):2174-2180.
    [29]
    覃小群,蒙荣国,莫日生.土地覆盖对岩溶地下河碳汇的影响——以广西打狗河为例[J].中国岩溶,2011,30(4):372-378.
    [30]
    陈伟杰,熊康宁,任晓冬,等.岩溶地区石漠化综合治理的固碳增汇效应研究——基于基地监测数据的分析[J].中国岩溶,2010,29(3):229-238.
    [31]
    曹建华,周莉,杨慧,等.桂林毛村岩溶区与碎屑岩林下土壤碳迁移对比及岩溶碳汇研究[J].第四纪研究,2011,31(3):431-436.
    [32]
    Suchet P A, Probst J L. A global model for present-day atmospheric / soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2)[J]. Tellus,1995,47B:273-280.
    [33]
    Li Wei, Zhou Peng-Peng, Jia Li-Ping, et al. Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi[J]. Mycopathologia, 2009,167:37-46.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2988) PDF downloads(2293) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return