• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 31 Issue 2
Jun.  2012
Turn off MathJax
Article Contents
YAN Xiao-long, CHEN Xi, ZHANG Zhi-cai, DIAO Gui-fang. Forecasting simulation for the discharge of epikarst spring on the basis of multiple linear regression[J]. CARSOLOGICA SINICA, 2012, 31(2): 154-159. doi: 10.3969/j.issn.1001-4810.2012.02.007
Citation: YAN Xiao-long, CHEN Xi, ZHANG Zhi-cai, DIAO Gui-fang. Forecasting simulation for the discharge of epikarst spring on the basis of multiple linear regression[J]. CARSOLOGICA SINICA, 2012, 31(2): 154-159. doi: 10.3969/j.issn.1001-4810.2012.02.007

Forecasting simulation for the discharge of epikarst spring on the basis of multiple linear regression

doi: 10.3969/j.issn.1001-4810.2012.02.007
  • Received Date: 2012-02-06
  • Publish Date: 2012-06-25
  • In light of the spring discharge and the precipitation date in Chenqi drainage area in Puding County, Anshun City, Guizhou Province, the auto-correlation and partial auto-correlation of the epikarst spring discharge as well as cross-correlation of the discharge-precipitation series are analyzed. And then, the lag time of the discharge series and the precipitation-discharge lag time are determined, and the multiple linear regression model established. The output results of the calibration period fit the measured discharge series well, the nash efficiency coefficient (NEC) is 0.996, the root-mean-square error (RMSE) is 3.0×10-7 m3/s and the mean relative error (MRE) is 2.12%. The NEC of the validation period is 0.985, the RMSE is 3.96×10-7 m3/s, and the MRE is 5.36%. The results demonstrate that along with the increase of the prediction period, the prediction error of the spring discharge in subsiding phase increases. The model established in this paper is feasible for simulating the spring discharge in 10 hours, and the average value of the relative errors of the calculated discharge in subsiding phase after6 rainfalls is less than 5%.

     

  • loading
  • [1]
    张志才.西南喀斯特流域分布式水文模型及其应用[D].南京:河海大学,2009.
    [2]
    朱生亮.表层岩溶水的时空分布及其变化规律[D].贵阳:贵州大学,2009.
    [3]
    姜光辉,郭芳.我国西南岩溶区表层岩溶带的水文动态分析[J].水文地质工程地质,2009,28(5):89-93.
    [4]
    覃小群,蒋忠诚.表层岩溶带及其水循环的研究进展与发展方向[J].中国岩溶,2005,24(3):250-254.
    [5]
    蒋忠诚,王瑞江,裴建国,等.我国南方表层岩溶带及其对岩溶水的调蓄功能[J],中国岩溶,2001,20(2):106-110.
    [6]
    Zaltsberg E A. Forecast of karst water levels[M]. Heise: Hydro-geology of Karstic Terraines, 1984: 40-42.
    [7]
    蒙海花,王腊春.岩溶流域水文模型研究进展[J].地理科学进展,2010,(11):1311-1318.
    [8]
    周训.降雨量泉流量时间序列的谱分析[J].勘察科学技术,1990,2:11-16.
    [9]
    张志才,陈喜,程勤波,等.喀斯特山体表层岩溶带水文地质特征分析——以陈旗小流域为例[J].地球与环境,2011,39(1):19-25.
    [10]
    Chow V T, Maidment D R, Mays L W. Applied Hydrology[R]. McGraw-Hill: NewYork,1988.
    [11]
    Hsu K L, Gupta H V, Sorooshian S. Artificial neural network modeling of the rainfall-runoff process[J]. Water Resources Research,1995,31(10):2517-2530.
    [12]
    Hu C, Hao Y, Yeh T J, et al. Simulation of spring flows from a karst aquifer with an artificial neural network[J]. Hydrol. Process, 2008,22:596-604.
    [13]
    Kovacs A, Sauter M. Modelling karst hydro dynamics[C]// Methods in Karst Hydrogeology, eds. Nico Goldscheider & David Drew, International contribution to hydrogeology, IAH Master Series, 2007,26:201-222.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2340) PDF downloads(1608) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return