• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 30 Issue 4
Dec.  2011
Turn off MathJax
Article Contents
Liu Zai-hua. “Method of maximum potential dissolution” to calculate the intensity of karst process and the relevant carbon sink:With discussions on methods of solute load and carbonate-rock-tablet test[J]. CARSOLOGICA SINICA, 2011, 30(4): 379-382. doi: 10.3969/j.issn.1001-4810.2011.04.005
Citation: Liu Zai-hua. “Method of maximum potential dissolution” to calculate the intensity of karst process and the relevant carbon sink:With discussions on methods of solute load and carbonate-rock-tablet test[J]. CARSOLOGICA SINICA, 2011, 30(4): 379-382. doi: 10.3969/j.issn.1001-4810.2011.04.005

“Method of maximum potential dissolution” to calculate the intensity of karst process and the relevant carbon sink:With discussions on methods of solute load and carbonate-rock-tablet test

doi: 10.3969/j.issn.1001-4810.2011.04.005
  • Received Date: 2011-10-08
  • Publish Date: 2011-12-25
  • Karst process is an important mechanism for carbon sink because dissolution of carbonate rock consumes atmospheric and/or soil CO2. This paper firstly introduces the methods of solute load and carbonate-rock-tablet test to calculate the intensity of karst process and the relevant carbon sink, and discusses the advantage and disadvantages of these methods (i.e., solute load method is only valid for the case where there is well-defined boundary and closed discharge of catchment, while carbonate-rock-tablet test is only valid for the case where there is no carbonate in the tested soil), and then put forward the method of maximum potential dissolution. With the method of maximum potential dissolution, the intensity of karst process and the relevant carbon sink can be obtained only if air temperature, rainfall and evapotranspiration are known in an area.

     

  • loading
  • [1]
    Yuan D. The carbon cycle in karst[J]. Zeitschrift fur Geonorphologie Neue Folge, 1997, 108 (Suppl-Bd): 91-102
    [2]
    Jiang Z, Yuan D. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999. 22: 33-35.
    [3]
    Liu Zaihua, Zhao Jinbo. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000, 39(9):1053-1058
    [4]
    Gombert P. Role of karstic dissolution in global carbon cycle[J]. Global and Planetary Change, 2002, 33: 177–184
    [5]
    Corbel J. Erosion en terrain calcaire (vitesse d’érosion et morphologie)[J]. Annales de Géographie, 1959, 68, 97–120.
    [6]
    Williams P W. An initial estimate of the speed of limestone solution in County Clare. Irish Geography[J], 1963, 4: 432– 441.
    [7]
    Gabrovsek F. On concepts and methods for the estimation of dissolutional denudation rates in karst areas[J]. Geomorphology, 2009, 106: 9–14
    [8]
    Trudill S T. Measurement of erosional weight-loss of rock tablets[J]. Tech. Bull.-Br. Geomorphol. Res. Group, 1975, 17 : 13–19.
    [9]
    Gams I. Comparative research of limestone solution by means of standard tablets[J]. 8th Int. Congress of Speleology. National Speleological Society, Huntsville, 1981, pp. 273– 275.
    [10]
    Gerome-Kupper M. L’erosion des calcaires a l’air fibre: mesure de processus actuels. Z. Geomorph. N.F., 1984, Suppl.-Bd. 49: 59-74.
    [11]
    Gams I. International comparative measurements of surface solution by means of standard limestone tablets. Razprave iv. Razreda Sazu, Zbornik Ivana Rakovca/Ivan Rakovec Volume, XXVI, 1 sl., Ljubljana, 361-386, 1985.
    [12]
    刘再华,袁道先,何师意,等.地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2来源[J].中国科学(D辑),2000,30:209-214.
    [13]
    Du J G, Cheng W Z, Zhang Y L, et al. Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan, Southwestern China[J]. Journal of Asian Earth Sciences, 2006, 26: 533-539
    [14]
    Hren M T, Chamberlain C P, Hilley G E, et al. Major ion chemistry of the Yarlung Tsangpo-Brahmaputra river: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya[J]. Geochimica et Cosmochimica Acta, 2007, 71: 2907-2935
    [15]
    Becker J A, Bickle M J, Galy A, et al. Himalayan metamorphic CO2 fluxes: Quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters, 2008, 265: 616-629
    [16]
    Hurwitz S, Evans W C, Lowenstern J B. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA[J] . Chemical Geology, 2010, 276: 331-343
    [17]
    Gaillardet J, Galy A. Himalaya - Carbon Sink or Source?[J]. Science, 2008, 320: 1727-1728
    [18]
    Amiotte-Suchet P, Probst A, Probst J L. Influence of acid rain on CO2 consumption by rock weathering: Local and global scales[J]. Water Air and Soil Pollution, 1995, 85: 1563-1568
    [19]
    Spence J, Telmer K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, delta C-13(DIC), and delta S-34(SO4) in rivers of the Canadian Cordillera[J]. Geochimica et Cosmochimica Acta, 2005, 69: 5441-5458
    [20]
    Lerman A, Wu L. CO2 and sulfuric acid controls of weathering and river water composition[J]. Journal of Geochemical Exploration, 2006, 88: 427-430
    [21]
    Lerman A, Wu L L, Mackenzie F T. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance[J]. Marine Chemistry, 2007, 106: 326-350
    [22]
    Li S L, Calmels D, Han G, et al. Sulfuric acid as an agent of carbonate weathering constrained by delta C-13(DIC): Examples from Southwest China[J]. Earth and Planetary Science Letters, 2008, 270: 189-199
    [23]
    Meyer H, Strauss H, Hetzel R. The role of supergene sulphuric acid during weathering in small river catchments in low mountain ranges of Central Europe: Implications for calculating the atmospheric CO2 budget[J]. Chemical Geology, 2009, 268: 41-51
    [24]
    Semhi K, Amiotte-Suchet P, Clauer N, et al. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin[J]. Applied Geochemistry, 2000, 15: 865-878
    [25]
    Perrin A, Probst A, Probst J. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta, 2008, 72: 3105-3123
    [26]
    Plan, L. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps[J]. Geomorphology, 2005, 68: 201-212
    [27]
    White B W. Rate processes: chemical kinetics and karst landform development. In: Lafleur, R.E. (Ed.), Groundwater as a Geomorphic Agent[J]. Binghampton Symp. in Geomorphology, 1984, vol. 13. Allen & Unwin, Boston, pp. 227-247.
    [28]
    Brook GA. A world model of soil carbon dioxide. Earth Surf[J]. Processes, 1983, 8: 79-88.
    [29]
    Dreybrodt W. Processes in karst systems[M]. Springer, Heidelberg, 1988
    [30]
    Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: the role of the diffusion boundary layer and the slow reaction H2O+CO2?H++HCO3-[J]. Geochimica et Cosmochimica Acta, 1997, 61: 2879-2889
    [31]
    Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99: 162-172.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2278) PDF downloads(1707) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return