Citation: | Liu Zai-hua. “Method of maximum potential dissolution” to calculate the intensity of karst process and the relevant carbon sink:With discussions on methods of solute load and carbonate-rock-tablet test[J]. CARSOLOGICA SINICA, 2011, 30(4): 379-382. doi: 10.3969/j.issn.1001-4810.2011.04.005 |
[1] |
Yuan D. The carbon cycle in karst[J]. Zeitschrift fur Geonorphologie Neue Folge, 1997, 108 (Suppl-Bd): 91-102
|
[2] |
Jiang Z, Yuan D. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999. 22: 33-35.
|
[3] |
Liu Zaihua, Zhao Jinbo. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000, 39(9):1053-1058
|
[4] |
Gombert P. Role of karstic dissolution in global carbon cycle[J]. Global and Planetary Change, 2002, 33: 177–184
|
[5] |
Corbel J. Erosion en terrain calcaire (vitesse d’érosion et morphologie)[J]. Annales de Géographie, 1959, 68, 97–120.
|
[6] |
Williams P W. An initial estimate of the speed of limestone solution in County Clare. Irish Geography[J], 1963, 4: 432– 441.
|
[7] |
Gabrovsek F. On concepts and methods for the estimation of dissolutional denudation rates in karst areas[J]. Geomorphology, 2009, 106: 9–14
|
[8] |
Trudill S T. Measurement of erosional weight-loss of rock tablets[J]. Tech. Bull.-Br. Geomorphol. Res. Group, 1975, 17 : 13–19.
|
[9] |
Gams I. Comparative research of limestone solution by means of standard tablets[J]. 8th Int. Congress of Speleology. National Speleological Society, Huntsville, 1981, pp. 273– 275.
|
[10] |
Gerome-Kupper M. L’erosion des calcaires a l’air fibre: mesure de processus actuels. Z. Geomorph. N.F., 1984, Suppl.-Bd. 49: 59-74.
|
[11] |
Gams I. International comparative measurements of surface solution by means of standard limestone tablets. Razprave iv. Razreda Sazu, Zbornik Ivana Rakovca/Ivan Rakovec Volume, XXVI, 1 sl., Ljubljana, 361-386, 1985.
|
[12] |
刘再华,袁道先,何师意,等.地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2来源[J].中国科学(D辑),2000,30:209-214.
|
[13] |
Du J G, Cheng W Z, Zhang Y L, et al. Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan, Southwestern China[J]. Journal of Asian Earth Sciences, 2006, 26: 533-539
|
[14] |
Hren M T, Chamberlain C P, Hilley G E, et al. Major ion chemistry of the Yarlung Tsangpo-Brahmaputra river: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya[J]. Geochimica et Cosmochimica Acta, 2007, 71: 2907-2935
|
[15] |
Becker J A, Bickle M J, Galy A, et al. Himalayan metamorphic CO2 fluxes: Quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters, 2008, 265: 616-629
|
[16] |
Hurwitz S, Evans W C, Lowenstern J B. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA[J] . Chemical Geology, 2010, 276: 331-343
|
[17] |
Gaillardet J, Galy A. Himalaya - Carbon Sink or Source?[J]. Science, 2008, 320: 1727-1728
|
[18] |
Amiotte-Suchet P, Probst A, Probst J L. Influence of acid rain on CO2 consumption by rock weathering: Local and global scales[J]. Water Air and Soil Pollution, 1995, 85: 1563-1568
|
[19] |
Spence J, Telmer K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, delta C-13(DIC), and delta S-34(SO4) in rivers of the Canadian Cordillera[J]. Geochimica et Cosmochimica Acta, 2005, 69: 5441-5458
|
[20] |
Lerman A, Wu L. CO2 and sulfuric acid controls of weathering and river water composition[J]. Journal of Geochemical Exploration, 2006, 88: 427-430
|
[21] |
Lerman A, Wu L L, Mackenzie F T. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance[J]. Marine Chemistry, 2007, 106: 326-350
|
[22] |
Li S L, Calmels D, Han G, et al. Sulfuric acid as an agent of carbonate weathering constrained by delta C-13(DIC): Examples from Southwest China[J]. Earth and Planetary Science Letters, 2008, 270: 189-199
|
[23] |
Meyer H, Strauss H, Hetzel R. The role of supergene sulphuric acid during weathering in small river catchments in low mountain ranges of Central Europe: Implications for calculating the atmospheric CO2 budget[J]. Chemical Geology, 2009, 268: 41-51
|
[24] |
Semhi K, Amiotte-Suchet P, Clauer N, et al. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin[J]. Applied Geochemistry, 2000, 15: 865-878
|
[25] |
Perrin A, Probst A, Probst J. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta, 2008, 72: 3105-3123
|
[26] |
Plan, L. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps[J]. Geomorphology, 2005, 68: 201-212
|
[27] |
White B W. Rate processes: chemical kinetics and karst landform development. In: Lafleur, R.E. (Ed.), Groundwater as a Geomorphic Agent[J]. Binghampton Symp. in Geomorphology, 1984, vol. 13. Allen & Unwin, Boston, pp. 227-247.
|
[28] |
Brook GA. A world model of soil carbon dioxide. Earth Surf[J]. Processes, 1983, 8: 79-88.
|
[29] |
Dreybrodt W. Processes in karst systems[M]. Springer, Heidelberg, 1988
|
[30] |
Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: the role of the diffusion boundary layer and the slow reaction H2O+CO2?H++HCO3-[J]. Geochimica et Cosmochimica Acta, 1997, 61: 2879-2889
|
[31] |
Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99: 162-172.
|