• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 29 Issue 3
Sep.  2010
Turn off MathJax
Article Contents
CHEN Fei-fei, HU Chao-yong, SHI Yu, RUAN Jiao-yang. Reconstruction of terrestrial productivity of Yichang region in the past 9000 years from stalagmite P/Ca ratio[J]. CARSOLOGICA SINICA, 2010, 29(3): 280-284. doi: 10.3969/j.issn.1001-4810.2010.03.010
Citation: CHEN Fei-fei, HU Chao-yong, SHI Yu, RUAN Jiao-yang. Reconstruction of terrestrial productivity of Yichang region in the past 9000 years from stalagmite P/Ca ratio[J]. CARSOLOGICA SINICA, 2010, 29(3): 280-284. doi: 10.3969/j.issn.1001-4810.2010.03.010

Reconstruction of terrestrial productivity of Yichang region in the past 9000 years from stalagmite P/Ca ratio

doi: 10.3969/j.issn.1001-4810.2010.03.010
  • Received Date: 2010-08-05
  • Publish Date: 2010-09-25
  • Terrestrial productivity plays an important role in the field of global change research, especially in global carbon recycling research. In this paper, geochemical composition of P and Ca in stalagmite HS4 from Heshang Cave, Qingjiang, Hubei Province is analyzed to investigate the response of stalagmite P/Ca ratio to the terrestrial productivity. The results prove that the P/Ca recorded in the spleothem in recent 50 years is significantly correlated with the local terrestrial productivity calculated by Thornthwaite Memorial Productivity Model, which implying stalagmite P/Ca may be the index for local terrestrial paleo-productivity. Based on P/Ca in the stalagmite HS4, regional paleo-productivity in Yichang are reconstructed. It is found that terrestrial productivity fluctuated during the past 9 000 years, which was low in 8.9ka~6.5ka BP, increased significantly during 6.5ka~5.0ka BP, and reached the top in 6.4ka~5.6kaBP, then fell to a low lever in 5.0ka~4.0ka BP; and increased gradually in 4.0ka~1.5ka BP, and after 1.5kaBP, lowered again. The fluctuation of terrestrial productivity is obviously constrained by global and regional climate.

     

  • loading
  • [1]
     Ortiz J D, Delviscio J, Dean W, et al. Enhanced marine productivity off western North America during warm climate intervals of the past 52 ky[J]. Geology,2004, 32(6): 521-524.
    [2]
     汪品先. 气候演变中的冰和碳[J]. 地学前缘,2002, 9(01): 85-93.
    [3]
    Tsunogai S, Noriki S. Particulate fluxes of carbonate and organic carbon in the ocean. Is the marine biological activity working as a sink of the atmospheric carbon?[J]. Tellus Series B-Chemical and Physical Meteorology,1991, 43: 256-266.
    [4]
    Berner R A. The long-term carbon cycle, fossil fuels and atmospheric composition[J]. Nature,2003, 426: 323-326.
    [5]
    Lohrenz S E, Fahnenstiel G L, Schofield O, et al. Coastal Sediment Dynamics and River Discharge as Key Factors Influencing Coastal Ecosystem Productivity in Southeastern Lake Michigan[J]. Oceanography,2008, 21(4): 60-69.
    [6]
    Russell J M, Werne J P. Climate change and productivity variations recorded by sedimentary sulfur in Lake Edward, Uganda/D. R. Congo[J]. Chemical geology,2009, 264(1-4): 337-346.
    [7]
    Bonn W J, Gingele F X, Grobe H, et al. Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka[J]. Palaeogeography palaeoclimatology palaeoecology,1998, 139(3-4): 195-211.
    [8]
    Pfeifer K, Kasten S, Hensen C, et al. Reconstruction of primary productivity from the barium contents in surface sediments of the South Atlantic Ocean[J]. Marine Geology,2000, 177: 13-24.
    [9]
    Filippelli G M, Sierro F J, Flores J A, et al. A sediment-nutrient-oxygen feedback responsible for productivity variations in Late Miocene sapropel sequences of the western Mediterranean[J]. Palaeogeophy, Palaeoclimatology, Palaeoecology,2002, 190: 335-348.
    [10]
    张会领,覃嘉铭,张美良,等. 洞穴化学沉积物的古环境记录研究进展[J]. 中国岩溶,2004, 23(02): 144-153.
    [11]
    章程,袁道先. 洞穴滴石石笋与陆地古环境记录研究进展[J]. 地球科学进展,2001(03).
    [12]
    Fairchild I J, Baker A, Borsato A, et al. Annual to sub-annual resolution of multiple trace-element trends in speleothems[J]. Journal of the geological society,2001, 158: 831-841.
    [13]
    Huang Y M, Fairchild I J, Borsato A, et al. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy)[J]. Chemical geology,2001, 175(3-4): 429-448.
    [14]
    Treble P, Shelley J, Chappell J. Comparison of high resolution sub-annual records of trace elements in a modern (1911—1992) speleothem with instrumental climate data from southwest Australia[J]. Earth and Planetary Science Letters,2003, 216(1-2): 141-153.
    [15]
    Baldini J U L, Mcdermott F, Fairchild I J. Structure of the 8200-Year Cold Event Revealed by a Speleothem Trace Element Record[J]. Science,2002, 296(5576): 2203-2206.
    [16]
    崔景伟. 湖北清江洞穴石笋中正构烷烃碳同位素的研究及其古植被意义[D]. 武汉: 中国地质大学(武汉), 2008.
    [17]
    Hu C, Henderson G M, Huang J, et al. Report of a three-year monitoring programme at Heshang Cave, Central China[J]. International journal of speleology,2008, 37(3): 143-151.
    [18]
    Johnson K R, Hu C, Belshaw N S, et al. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction[J]. Earth and Planetary Science Letters,2006, 244(1-2): 394-407.
    [19]
    Hu C, Henderson G M, Huang J, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters,2008, 266(3-4): 221-232.
    [20]
    何璐瑶,胡超涌,曹振华,等. 湖北清江和尚洞洞穴温度对气候变化的响应[J]. 中国岩溶, 2008, 27(03): 273-282.
    [21]
    Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science,2003, 300(5625): 1560-1563.
    [22]
    Nemry B, Francois L, Gerard J C, et al. Comparing global models of terrestrial net primary productivity (NPP): analysis of the seasonal atmospheric CO2 signal[J]. Global change biology,1999, 5: 65-76.
    [23]
    Lieth H. Primary Production:Terrestrial Ecosystems[J]. Human Ecology,1973, 1(4): 303-332.
    [24]
    朱文泉,陈云浩,徐丹,等. 陆地植被净初级生产力计算模型研究进展[J]. 生态学杂志,2005, 24(03): 296-300.
    [25]
    赵俊芳,延晓冬,朱玉洁. 陆地植被净初级生产力研究进展[J]. 中国沙漠,2007, 27(05): 781-786.
    [26]
    孙睿,朱启疆. 陆地植被净第一性生产力的研究[J]. 应用生态学报,1999, 10(06): 757-760.
    [27]
    Dansgaard W, Johnsen S J, Clausen H B, et al. Evience for general instability of past climate from a 250-KYR ice-core record[J]. Nature,1993, 364(6434): 218-220.
    [28]
    Von Grafenstein U, H E, J M, et al. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland[J]. CLIMATE DYNAMICS,1998, 14(2): 73-81.
    [29]
    Wang Y, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon:Links to Solar Changes and North Atlantic Climate[J]. Science,2005, 308: 854-857.
    [30]
    Ellison C R W, Chapman M R, Hall I R. Surface and Deep Ocean Interactions During the Cold Climate Event 8200 Years Ago[J]. Science,2006, 312: 1929-1932.
    [31]
    Sirocko F, Sarnthein M, Erlenkeuser H, et al. Century-scale events in monsoonal climate over the past 24,000 years[J]. Nature,1993, 364(6435): 322-324.
    [32]
    Members C. Climatic changes of the last 18,000 years-observations and model simulations[J]. Science,1988, 241(4869): 1043-1052.
    [33]
    吴锡浩,安芷生,王苏民,等. 中国全新世气候适宜期东亚夏季风时空变迁[J]. 第四纪研究, 1994(01): 24-37.
    [34]
    Berger A L. Long term variation of daily insolation and quaternary climate change[J]. Science,1978, 35: 2362-2367.
    [35]
    黄俊华,胡超涌,周群峰. 湖北清江和尚洞石笋的高分辨率碳氧同位素及古气候研究[J]. 地球科学——中国地质大学学报, 2000, 25(5): 505-509.
    [36]
    Wenxiang W, Tungsheng L. Possible role of the "Holocene Event 3" on the collapse of Neolithic Cultures around the Central Plain of China[J]. Quaternary International, 2004, 117: 153-166.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1874) PDF downloads(1692) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return