• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
XI Chunfei, NIU Guangtian, LI Fan, CHEN Di, CHEN Huapeng, LEI Qiguo. Study on multi-scale geophysical detection methods for vertical dissolution fissures in limestone areas[J]. CARSOLOGICA SINICA, 2025, 44(6): 1291-1300. doi: 10.11932/karst2025y025
Citation: XI Chunfei, NIU Guangtian, LI Fan, CHEN Di, CHEN Huapeng, LEI Qiguo. Study on multi-scale geophysical detection methods for vertical dissolution fissures in limestone areas[J]. CARSOLOGICA SINICA, 2025, 44(6): 1291-1300. doi: 10.11932/karst2025y025

Study on multi-scale geophysical detection methods for vertical dissolution fissures in limestone areas

doi: 10.11932/karst2025y025
  • Received Date: 2025-02-22
  • Accepted Date: 2025-10-31
  • Rev Recd Date: 2025-10-27
  • To address the challenges of strong concealment and high detection accuracy requirements for vertical dissolution fissures in limestone areas, this study proposes a multi-scale integrated detection system that combines high-density Electrical Resistivity Tomography (ERT) for macro-scale anomaly delineation with cross-hole electromagnetic wave CT imaging for refined characterization. Through numerical simulations comparing the vertical fissure identification capabilities of the Wenner array, three-pole array, and dipole-dipole array, the dipole-dipole array-with superior lateral resolution and noise resistance-was selected for field experiments. The ERT method rapidly delineated low-resistivity anomaly zones, while cross-hole electromagnetic wave CT imaging precisely resolved fissure development characteristics. The results demonstrate that the dipole-dipole array effectively reconstructs the spatial distribution of vertical fissures. Strong absorption anomaly zones identified by electromagnetic wave CT spatially align with ERT-derived low-resistivity anomalies. Borehole coring revealed significantly higher rock fragmentation in geophysically delineated fissure zones compared to adjacent layers, validating the reliability of the geophysical results. This integrated technical framework provides scientific support for concealed fissure identification, engineering stability evaluation, and geological hazard prevention in karst regions.This study area is located in Yichang City, Hubei Province. Geological structure and weathering/erosion processes have resulted in steep terrain with significant slopes. Well-developed solution grooves, varying in width from centimeters to meters and in depth from shallow surface etching to several meters, are evident on the rock surfaces. Ground fissures are often filled with argillaceous material. Bedrock (limestone) is extensively exposed in the area. A specific ground fissure was observed, approximately 30 meters in length, with an average width of 0.5 meters and a visible depth ranging between 0.5 to 2 meters. This fissure trends approximately N10°E and extends towards a vertical dissolution slot to the north. This slot feature is about 100 meters in height and exhibits dense vegetation growth within. Given its characteristics and proximity to the slot, it is inferred that this surface fissure may extend downward into the subsurface rock mass, prompting the implementation of our geophysical investigation here.Building upon previous research and site survey, we first constructed a digital resistivity model for forward modeling. Comparative analysis of various electrode array configurations and noise levels led to the selection of a dipole-dipole array with a minimum electrode spacing of 5 meters for the initial, broad-scale delineation of the fissure zone. Results successfully located the fissure, and a confirmation borehole drilled within the anomalous resistivity zone revealed highly fractured core material, providing strong validation for the effectiveness of the ERT method in identifying fractured regions. However, inherent limitations of the ERT method concerning site conditions and resolution meant the delineated fissure boundary remained relatively broad. To achieve a more precise characterization of the dissolution fissure's morphology and extent, cross-hole electromagnetic wave CT was subsequently conducted between the boreholes,which provided detailed imaging of the subsurface dissolution features.

     

  • loading
  • [1]
    刘永亮, 张伟, 刘振宇, 易连兴, 吴秋菊, 梁楠, 甘伏平, 邬健强, 韩凯. 高密度电阻率法和音频大地电磁法在猴场滑坡结构探测中的应用[J]. 中国岩溶, 2024, 43(2): 441-453.

    LIU Yongliang, ZHANG Wei, LIU Zhenyu, YI Lianxing, WU Qiuju, LIANG Nan, GAN Fuping, WU Jianqiang, HAN Kai. Application of high-density resistivity method and audio-frequency magnetotelluric method in the detection of landslide structure in Houchang town[J]. Carsologica Sinica, 2024, 43(2): 441-453.
    [2]
    陈贻祥, 黄奇波, 覃小群, 韩凯, 肖琼, 苗迎, 杜成亮, 贺德煌. 自然电场法与高密度电法联作在西江中下游岩溶区找水中的应用[J]. 中国岩溶, 2022, 41(5): 684-697.

    CHEN Yixiang, HUANG Qibo, QIN Xiaoqun, HAN Kai, XIAO Qiong, MIAO Ying, DU Chengliang, HE Dehuang. Application of self-potential and high-density resistivity method to the water exploration in karst terrain of middle-lower reaches of Xijiang River[J]. Carsologica Sinica, 2022, 41(5): 684-697.
    [3]
    马吉静. 高密度电阻率法的异常识别和推断: 以溶洞探测和寻找地下水为例[J]. 地球物理学进展, 2019, 34(4): 1489-1498.

    MA Jijing. Anomaly identification and inference of high density resistivity method: take karst cave exploration and groundwater exploration as an example.[J]. Progress in Geophysics, 2019, 34(4): 1489-1498.
    [4]
    梁添才, 陈清. 高密度电法三极装置在岩溶探测中的应用[J]. 工程地球物理学报, 2019, 16(5): 770-774.

    LIANG Tiancai, CHEN Qing. Application of high-density electrical three-pole device to karst exploration[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5): 770-774.
    [5]
    胡雄武, 李红文. 正反三极电阻率联合反演在水库渗漏检测中的应用[J]. 水利水电技术, 2018, 49(10): 173-178.

    HU Xiongwu, LI Hongwen. Application of joint inversion of forward and reverse pole-dipole resistivity in reservoir leakage detection[J]. Water Resources and Hydropower Engineering, 2018, 49(10): 173-178.
    [6]
    刘道涵, 徐俊杰, 齐信, 邬健强. 基于高密度电法的城市岩溶地下水通道三维电性成像[J]. 中国岩溶, 2023, 42(6): 1331-1338.

    LIU Daohan, XU Junjie, QI Xin, WU Jianqiang. Three-dimensional electrical imaging of urban karst groundwater channels based on electrical resistivity tomography[J]. Carsologica Sinica, 2023, 42(6): 1331-1338.
    [7]
    刘四新, 倪建福. 井间电磁法综述[J]. 地球物理学进展, 2020, 35(1): 153-165.

    LIU Sixin, NI Jianfu. Review for cross-hole electromagnetic method[J]. Progress in Geophysics, 2020, 35(1): 153-165.
    [8]
    黎华清, 徐远光, 甘伏平, 赵伟, 卢建集. 孔间电磁波CT法在左江电站火成岩坝基风化结构评价中的应用[J]. 岩土力学, 2010, 31(S1): 430-434.

    LI Huaqing, XU Yuanguang, GAN Fuping, ZHAO Wei, LU Jianji. Application of cross-well electromagnetic wave CT technique to evaluating weathered igneous rock dam structure of Zuojiang river power station[J]. Rock and Soil Mechanics, 2010, 31(S1): 430-434.
    [9]
    张华, 张贵, 王宇, 方永林, 代旭升, 王波, 何绕生, 罗为群, 蓝芙宁. 岩溶断陷盆地跨孔CT成像探测岩溶孔隙及赋水状态的实验研究[J]. 中国岩溶, 2020, 39(5): 737-744.

    ZHANG Hua, ZHANG Gui, WANG Yu, FANG Yonglin, DAI Xusheng, WANG Bo, HE Raosheng, LUO Weiqun, LAN Funning. Experimental study on the detection of karst pores by cross-hole CT imaging and groundwater occurrence in the Luxi karst fault-depression basin[J]. Carsologica Sinica, 2020, 39(5): 737-744.
    [10]
    代方园, 高扬, 宿庆伟, 胡韬, 耿付强, 董亚楠. 瞬变电磁与跨孔CT成像探测岩溶分布及形态特征的应用: 以山东省济南地区为例[J]. 中国岩溶, 2022, 41(2): 308-317, 328.

    DAI Fangyuan, GAO Yang, SU Qingwei, HU Tao, GENG Fuqiang, DONG Yanan. Application of transient electromagnetism and cross-hole CT imaging to detect karst distribution and morphological characteristics∶A case study of Jinan, Shandong Province[J]. Carsologica Sinica, 2022, 41(2): 308-317, 328.
    [11]
    吴岩, 顾汉明, 刘铁, 曹哲明. 电磁波CT在碳酸盐岩缝洞勘察中的应用[J]. 工程地球物理学报, 2009, 6(2): 185-189.

    WU Yan, GU Hanming, LIU Tie, Cao Zheming. Application of electromagnetic CT to cavern and fracture prospecting in carbonate rock[J]. Chinese Journal of Engineering Geophysics, 2009, 6(2): 185-189.
    [12]
    郑智杰, 陈贻祥, 甘伏平. 岩溶区岩土层地球物理性质浅析: 以吉利岩溶塌陷区为例[J]. 地球物理学进展, 2016, 31(2): 920-927.

    ZHENG ZhiJie, CHEN Yixiang, GAN Fuping. Brief analysis of the geophysical properties of rock and soil in karst area-taking geely karst collapse area as an example[J]. Progress in Geophysics, 2016, 31(2): 920-927.
    [13]
    何禹, 李永涛, 朱亚军. 钻孔电磁波CT技术在深部岩溶勘探中的应用[J]. 工程地球物理学报, 2010, 7(4): 451-455. doi: 10.1088/1742-2140/7/4/M01

    HE Yu, LI Yongtao, ZHU Yajun. Application of drilling electromagnetic CT to deep cavern and fracture prospecting[J]. Chinese Journal of Engineering Geophysics, 2010, 7(4): 451-455. doi: 10.1088/1742-2140/7/4/M01
    [14]
    李金铭. 地电场与电法勘探[M]. 北京: 地质出版社, 2005.

    LI Jinming. Geoelectric field and electrical prospecting [M]. Beijing: Geological Publishing House, 2005.
    [15]
    郑冰, 李柳德. 高密度电法不同装置的探测效果对比[J]. 工程地球物理学报, 2015, 12(1): 33-39. doi: 10.1088/1742-2132/12/1/33

    ZHENG Bing, LI Liude. The exploring effect comparison of different settings in resistivity tomography[J]. Chinese Journal of Engineering Geophysics, 2015, 12(1): 33-39. doi: 10.1088/1742-2132/12/1/33
    [16]
    马志飞, 刘鸿福, 叶章, 杨建军. 高密度电法不同装置的勘探效果对比[J]. 物探装备, 2009, 19(1): 52-55, 67.

    MA Zhifei, LIU Hongfu, YE Zhang, YANG Jianjun. Comparison of exploration effect for different devices of high-density electrical prospecting[J]. Equipment for Geophysical Prospecting, 2009, 19(1): 52-55, 67.
    [17]
    严加永, 孟贵祥, 吕庆田, 张昆, 陈向斌. 高密度电法的进展与展望[J]. 物探与化探, 2012, 36(4): 576-584.

    YAN Jiayong, MENG Guixiang, LYU Qingtian, ZHANG Kun, CHEN Xiangbin. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4): 576-584.
    [18]
    吴以仁. 钻孔电磁波法[M]. 北京: 地质出版社, 1982.

    WU Yiren. Borehole electromagnetic wave method [M]. Beijing: Geological Publishing House, 1982.
    [19]
    罗彩红, 邢健, 郭蕾, 秦尚林. 基于井间电磁CT探测的岩溶空间分布特征[J]. 岩土力学, 2016, 37(S1): 669-673.

    LUO Caihong , XING Jian , GUO Lei, QIN Shanglin. Spatial distribution characteristics of karst based on cross hole electromagnetic computerized tomography technique[J]. Rock and Soil Mechanics, 2016, 37(S1): 669-673.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (5) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return